แนวทางการใช้เทคนิคโปรติโอมิกส์ในการหาตัวบ่งชี้ที่จำเพาะต่อความสมบูรณ์พันธุ์ในเซมินอล พลาสมาและอสุจิ Proteomics Tools for Fertility Biomarkers in Seminal Plasma and Spermatozoa
Main Article Content
Abstract
Proteomics has been used for the systemic study of proteins in a cell such as protein expression and analyses changes in quantity and quality of protein expression with high efficiency and accuracy. The used of proteomics approach to study changes of spermatozoa. Proteomics analysis is a highly sensitive method which can be used for the detection of a very small amount of protein sample with detection limit of femtomole. Moreover, this method provides very high throughput. Recently, the application of proteomic approaches such as the two-dimensional polyacrylamide gel electrophoresis, mass spectrometry, and differential in-gel electrophoresis has identified several sperm-specific proteins. Spermatozoa are highly specialized cells that can be easily obtained and purified. Mature spermatozoa are transcription and translation inactive and incapable of protein synthesis. In addition, spermatozoa contain relatively higher amounts of membrane proteins compared to other cells; therefore, they are very suitable for proteomic studies. These findings have provided a further understanding of protein functions involved in different sperm processes as well as of the differentiation of normal state from an abnormal one. In addition, studies on the sperm proteome have demonstrated the importance of spermatozoa posttranslational modifications and their ability to induce physiological changes responsible for fertilization.
Article Details
References
Ashizawa, K., G. J. Wishart, S. Katayama, D. Takano, A. R. A. H. Ranasinghe, K. Narumi, and Y.Tsuzuki. 2006. Regulation of acrosome reaction of fowl spermatozoa: evidence for the involvement of protein kinase C and protein phosphatase-type 1 and/or -type 2A. Reproduction. 131: 1017-1024.
Baker J., M. P. Hardy, J. Zhou, C. Bondy, F. Lupu, A. R. Bellve, and A. Efstratiadis. 1996. Effects of an Igf1 gene null mutation on mouse reproduction. Mol. Endocrinol. 10: 903-918.
Baker, M. A., N. D. Smith, L. Hetherington, M. Pelzing, M. R. Condina, and R. J. Aitken. 2011. Use of titanium dioxide to find phosphopeptide and total protein changes during epididymal sperm maturation. Proteome. Res. 10: 1004 –1017.
Bonde J. P., E. Ernst, and T. K. Jensen. 1998. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. The Lancet. 10: 1172-1177.
Braundmeier, A. G., J. M. Demers, R. D. Shanks, and D. J. Miller. 2004. The relationship of porcine sperm zona-binding ability to fertility. Anim. Sci. 82: 452-458.
Brown P. R., K. Miki, D. B. Harper, and E. M. Eddy. 2003. A-kinase anchoring protein 4 binding proteins in the fibrous sheath of the sperm flagellum. Biol. Reprod. 68: 2241-2248.
Budworth P. R., R. P. Amann, and P. L. Chapman. 1988. Relationships between computerized measurements of motion of frozenthawed bull spermatozoa and fertility. Andrology. 9: 41-54.
Cheng, C. Y., P. R. Chen, C. J. Chen, S. H. Wang, C. F. Chen, Y. P. Lee, and S. Y. Huang. 2015. Differential protein expression in chicken spermatozoa before and after freezing-thawing treatment. Anim. Reprod. Sci. 152: 99-107.
Cocco T., M. Di Paola, S. Papa, and M. Lorusso. 1998. Chemical modification of the bovine mitochondrial bc1 complex reveals critical acidic residues involved in the proton pumping activity. Biochemistry. 37: 2037-2043.
Cui Y., H. Zhu, and Y. Zhu. 2008. Proteomic analysis of testis biopsies in men treated with injectable testosterone undecanoate alone or in combination with oral levonorgestrel as potential male contraceptive. Proteome. Res.7: 3984-3993.
D’Amours, O., G. Frenette, M. Fortier, P. Leclerc, and R. Sullivan. 2010. Proteomic comparison of detergent-extracted sperm proteins from bulls with different fertility indexes. Reproduction. 139: 545-556.
Force A., J. L. Viallard, G. Grizard, and D. Boucher. 2002. Enolase isoforms activities in spermatozoa from men with normospermia and abnormospermia. Andrology. 23: 202-210.
Fouchecourt S., S. Metayer, A. Locatelli, F. Dacheux, and J.L. Dacheux. 2000. Stallion epididymal fluid proteome: qualitative and quantitative characterization; secretion and dynamic changes of major proteins. Biol. Reprod. 62: 1790-1803.
Fraser, L. R., S. A. Adeoya-Osiguwa, R. W. Baxendale, and R. Gibbons. 2006. Regulation of mammalian sperm capacitation by endogenous molecules. Front. Biosci. 11: 1636-1645.
Gaviraghi A., F. Deriu, and A. Soggiu. 2010. Proteomics to investigate fertility in bulls. Vet.Res. Com. 1: 33-36.
Hamann, H., R. Jude, H. Sieme, U. Mertens, E. Topfer-Petersen, O. Distl, and T. Leeb. 2007. A Polymorphism within the equine CRISP3 gene is associated with stallion fertility in Hanoverian warm blood horses. Anim. Genet. 38: 259-264.
Jagan -Mohanarao, G., and S. K. Atreja. 2011. Identification of capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) and cattle spermatozoa. Anim. Reprod. Sci. 123: 40-47.
Kierszenbaum , A. L., and L. L. Tres. 2004. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch. Histol. Cytol. 67: 271-284.
Kimmins, S. and P. Sassone-Corsi. 2005. Chromatin remodelling and epigenetic features of germ cells. Nature. 434: 583-589.
Kjaestad, H., E. Ropstad, and K. A. Berg. 1993. Evaluation of spermatological parameters used to predict the fertility of frozen bull semen. Acta. Vet. Scan. 34: 299-303.
Kovac, J. R., A. W. Pastuszak, and D. J. Lamb. 2013. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil. Steril. 99: 998-1007.
Kwon, W. S., Y. J. Park, el. and S. A. Mohamed. 2013. Voltagedependent anion channels are a key factor of male fertility. Fertil. Steril. 99: 354-361.
Labas, V., L. Spina, C. Belleannee, A. P. Teixeira-Gomes, A. Gargaros, F. Dacheux, and J. L. Dacheux. 2015. Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry. Proteomics. 113: 226-243.
Lea, I. A., E. E. Widgren, and M. G. O’Rand. 2004. Association of sperm protein 17 with A-kinase anchoring protein 3 in flagella. Reprod. Biol. Endo. 2: 57.
Li, L.W., L. Q. Fan, and W. B. Zhu. 2007. Establishment of a highresolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors. Asian. 9: 321-329.
Luconi, M., G. Cantini, E. Baldi, and G. Forti. 2011. Role of a-kinase anchoring proteins (AKAPs) in reproduction. Front. Biosci. 16: 1315-1330.
Liu, B., P. Wang, and Z. Wang. 2010. Analysis and difference of voltage-dependent anion channel mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia. Assist. Reprod. Genet. 27:719-724.
Macpherson, M. L., R. C. Simmen, F. A. Simmen, J. Hernandez, B. R. Sheerin, D. D. Varner, P. Loomis, M. E. Cadario, C. D. Miller, S. P. Brinsko, S. Rigby, and T. L. Blanchard. 2002. Insulin-like growth factor-I and insulin-like growth factor binding protein-2 and -5 in equine seminal plasma: association with sperm characteristics and fertility. Biol. Reprod. 67: 648-654.
Martinez-Heredia, J., J. M. Estanyol, J. L. Ballesca, and R. `Oliva 2006. Proteomic identification of human sperm proteins. Proteomics. 6: 4356-4369.
Martinez-Heredia, J., S. de Mateo, J. M. Vidal-Taboada, J. L. Ballesca and R. Oliva. 2008. Identification of proteomic differences in asthenozoospermic sperm samples. Hum. Reprod. 23: 783-791.
Novak, S., T. A. Smith, F. Paradis, L. Burwash, M. K. Dyck, G. R. Foxcrort, and W. T. Dixon. 2010. Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions. Theriogenology. 74: 956-967.
O’Donnell, L. and M.K. O’Bryan. 2014. Microtubules and spermatogenesis. Semin. Cell. Dev. Biol. 30: 45-54.
Park, Y. J., W. S. Kwon, S. A. Oh. 2012. Fertility-related proteomic profiling bull spermatozoa separated by percoll. Prot. Res. 11: 4162-4168.
Peddinti, D., B. Nanduri, A. Kaya, J. M. Feugang, S. C. Burgess, and E. Memili. 2008. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Sys. Bio. 22: 1-9.
Pixton, K. L., E. D. Deeks, F. M. Flesch, F. L. Moseley, L. Bjorndahl, P. R. Ashton, C. L. Barratt, and I. A. Brewis. 2004. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum. Reprod. 19: 1438-1447.
Rahman, S. M., J. S. Lee, W. S. Kwon, and M. G. Pang. 2013. Sperm Proteomics: Road to male fertility and contraception. Int. Endoc. 2013: 1-11.
Rousseaux, S., C. Caron, J. Govin, C. Lestrat, A. K. Faure, and S. Khochbin. 2005. Establishment of male-specific epigenetic information. Gene. 345: 139-153.
Shukla, K. K., W. S. Kwon, and M. S. Rahman. 2013. Nutlin-3a decreases male fertility via UQCRC2. PLoS. ONE. 8: e76959.
Sooderquist, L., H. Rodriguez-Martinez, and L. Janson. 1991. Post- thaw motility, ATP content and cytochrome C oxidase activity of A.I. Bull spermatozoa in relation to fertility. Zent. Vet. A. 38:165-174.
Thepparat, T., S. Katawatin, T. Vongpralub, M. Duangjinda, S. Thammasirirak, A. Utha. 2012a. Separation of bovine spermatozoa protein using 2D-PAGE revealed the relationship between tektin-4 expression patterns and spermatozoa motility. Theriogenology. 77: 1816-1821.
Thepparat, T., S. Katawatin, T. Vongpralub, M. Duangjinda, S. Thammasirirak, A. Utha. 2012b. Markedly different expression in mature bovine proacrosin binding protein (sp32). Thai. J Vet. Med. 42: 463-469.
Thundathil, J., J. Gil, and A. Januskauskas. 1999. Relationship between the proportion of capacitated spermatozoa present in frozen-thawed bull semen and fertility with artificial insemination. Andrology. 22 :366-373.
Topfer-Petersen, E., M. Ekhlasi-Hundrieser, C. Kirchhoff, T. Leeb and H. Sieme. 2005. The role of stallion seminal proteins in fertilisation. Anim. Reprod. Sci. 89: 159-170.
Xu, W., H. Hu, and Z. Wang. 2012. Proteomic character-istics of spermatozoa in normozoospermic patients with infertility. Proteomics. 18: 5426-5436.
Yuan, J. P., K. Kiselyov, D. M. Shin, J. Chen, N. Shcheynikov, S. H. Kang, M. H. Dehoff, M. K. Schwarz, P. H. Seeburg, S. Muallem, and P. F. Worley. 2003. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell. 114: 777-789.
Zumoffen, C. M., R. Gil, and A. M. Caille. 2013. A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction. Hum. Reprod. 28: 1297-1308.