Detection of quantitative trait loci controlling fiber content and pod length in yardlong bean by SNP molecular marker

Main Article Content

Patiruj Jirakranwong
Orn-u-ma Tanadul

Abstract

Yardlong bean [Vigna unguiculata subsp. sesquipedalis (L.) Verdc.] is one of an economically important vegetable legume crop in the Thailand. Ngu bean is a type of yardlong beans in which the pod texture is crispy, curly, wrinkled, rougher, thicker and shorter than yardlong beans. The different of texture between yardlong bean and Ngu bean is expected due to the amount of fiber in bean pod: cellulose, hemicellulose and lignin. The objective of this study is to identify the quantitative trait loci (QTLs) controlling pod length and the amount of cellulose, hemicellulose and lignin of yardlong bean. An F2 population of cross between Ngu bean and yardlong bean cultivar “Raya” was used to construct genetic map of Single Nucleotide Polymorphism (SNP) markers and evaluate for pod length and pod fiber content. The pod length of F2 population ranged from 23.7-75.5 cm. The fiber content of cellulose, hemicellulose and lignin varied from 18.03-25.16, 5.87-12.07 and 1.56-8.77%, respectively. A genetic map containing 441 SNPs was constructed and used to identify six quantitative trait loci (QTLs) for these traits. Four QTLs responsible for pod length were found one each on LG4 and LG7.2 and 2 QTLs on LG8. QTL analysis detected two QTLs related for cellulose content on LG8 and LG10. Moreover, QTL of cellulose content on LG8 was similar to LG1 and QTL of pod length on LG4 and LG8 were similar to LG7 and LG3 which were identified by previous work

Article Details

How to Cite
Jirakranwong, P., & Tanadul, O.- u- ma . (2020). Detection of quantitative trait loci controlling fiber content and pod length in yardlong bean by SNP molecular marker. Khon Kaen Agriculture Journal, 48(3), 461–470. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/251250
Section
บทความวิจัย (research article)

References

กรุง สีตะธนี. 2551. ถั่วงู. ศูนย์วิจัยและพัฒนาพืชผักเขตร้อน, มหาวิทยาลัยเกษตรศาสตร์, นครปฐม.

จุฑารัตน์ ธนาไชยสกุล. 2529. ผลของระยะเวลาปลูกต่อผลผลิตและคุณภาพของเมล็ดพันธุ์ถั่วฝักยาว. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.

ดวงใจ ชะนะพาล, สรพงค์ เบญจศรี, ภาณุมาศ พฤฒิคณี, ศิริกาญจน์ ปานแก้ว, สกุลรัตน์ แสนปุตะวงษ์, อรวรรณ ศรีโสมพันธ์, สกุลกานต์ สิมลา, และ บุษกร อุตรภิชาติ. 2559. ศึกษาผลผลิตและองค์ประกอบผลผลิตของถั่วฝักยาวและถั่วพุ่ม. แก่นเกษตร. 44 ฉบับพิเศษ 1 : 801 – 806.

วิภาวรรณ เสือนุ่ม. 2558. การค้นหาตาแหน่งของ QTL ที่ควบคุมปริมาณเส้นใยในฝักและการแตกของฝักในถั่วฝักยาว.วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต (การปรับปรุงพันธุ์พืช) มหาวิทยาลัยเกษตรศาสตร์, นครปฐม.

ศูนย์เทคโนโลยีสารสนเทศและการสื่อสาร กรมส่งเสริมการเกษตร. 2560. ข้อมูลภาวการณ์ผลิตพืช (รต.) ปี 2559/60. แหล่งข้อมูล: www.agriinfo.doae.go.th/year60/plant/rortor/page1.pdf. ค้นเมื่อ 14 มกราคม 2561

Babu, V., A. Thapliyal and G.K. Patel. 2014. Biofuels Production. Scrivener Publishing, MA.

Bonawitz, N.D. and C. Chapple. 2010. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu. Rev. Genet. 44 : 337 – 363.

Burton, W.G. and E.H. Devane. 1953. Estimating heritability in tall Fescue (Festuca arundinacea) from replicated clonal material. Agron. J. 45 : 474 – 481.

Chen, H. 2014. Biotechnology of Lignocellulose Theory and Practice. Chemical Industry Press, Beijing.

Collard, F.X. and J. Blin. 2014. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 38 : 594 – 608.

Heldt, H.W. and B. Piechulla. 2005. Plant Biochemistry Third Edition. Elsevier Academic Press, NYC.

Jaccoud, D., K. Peng, D. Feinstein and A. Kilian. 2001. Diversity arrays: A solid state technology for sequence independent genotyping. Nucleic Acids Res. 29 : e25

Kilian, A., G. Sanewski and L. Ko. 2016. The application of DArTseq technology to pineapple. Acta Hort. 1111 : 181 – 188.

Kongjaimun, A., A. Kaga, N. Tomooka, P. Somta, T. Shimizu, Y. Shu, T. Isemura, D.A. Vaughan and P. Srinives. 2012. An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata sesquipedalis group) and QTL analysis of pod length. Genome. 55 : 81 – 92.

Liu, J., T. Shikano, T. Leinonen, J. M. Cano, M. Li and J. Merilä. 2014. Identification of major and minor QTL for ecologically important morphological traits in three-spined sticklebacks (Gasterosteus aculeatus). G3. 4 : 595 – 604.

Lodhi, M.A., G.N. Ye, N.F. Weeden and B.I. Reisch. 1994. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol. Biol. Rep. 12 : 6 – 13.

Nemli, S., T. Asçiogul, D. Ates, D. Esiyok and B. Tanyolac. 2017. Diversity and genetic analysis through DArTseq in common bean (Phaseolus vulgaris L.) germplasm from Turkey. Turk J Agric For. 41 : 389 – 404.

Phung, N.T.P., C.D. Mai, P. Mournet, J. Frouin, G. Droc, N.K. Ta, S. Jouannic, L.T. Lê, V.N. Do, P. Gantet and B. Courtois. 2014. Characterization of a panel of Vietnamese rice varieties using DArT and SNP markers for association mapping purposes. BMC Plant Biol. 14 : 371.

R Development Core Team. 2018. R: A Language and Environment for Statistical Computing. (Online). Available: https://www.R-project.org. Accessed Apr. 25, 2018.

Raman, H., R. Raman, A. Kilian, F. Detering, J. Carling, N. Coombes, S. Diffey, G. Kadkol, D. Edwards, M. McCully, P. Ruperao, I. A. P. Parkin, J. Batley, D. J. Luckett and N. Wratten. 2014. Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE. 9 : e101673

Rieseberg, L. H., M. A. Archer and R. K. Wayne. 1999. Transgressive segregation, adaptation and speciation. Heredity. 83 : 363 – 372.

Shiringani, A. L. and W. Friedt. 2011. QTL for fibre-related traits in grain 3 sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor. Appl. Genet. 123 : 999 – 1011.

Snape, J. W and T. S. Riggs. 1975. Genetical consequences of single seed descent in the breeding of self pollinating crops. Heredity. 35 : 211 – 219.

Suanum, W, P. Somta, A. Kongjaimun, T. Yimram, A. Kaga, N. Tomooka, Y. Takahashi and P. Srinives. 2016. Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Mol Breeding. 36 : 80.

Van Soest, P.J., J.B. Robertson and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J Dairy Sci. 74 : 3583 – 3597.

Wang, J., H. Li, L. Zhang and L. Meng. 2016. Users’ Manual of QTL IciMapping. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing and Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico.

Xu, P., X. Wu, M. Muñoz-Amatriaín, B. Wang, X. Wu, Y. Hu, B. Huynh, T.J. Close, P.A. Roberts, W. Zhou, Z. Lu and G. Li. 2017. Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Plant Biotechnol. J. 15 : 547 – 557.