Effect of crop rotation in rubber plantations on some soil properties and carbon content

Main Article Content

Phantip Panklang
Rawee Chiarawipa
Sayan Sdoodee
Alexis Thoumazeau
Alain Brauman

Abstract

The study aimed to determine the effect of rotation and age of rubber plantation on soil properties and carbon content in Ban Nasan district, Suratthani province. The experimental design was a randomized complete block design (RCBD) with 3 replications conducted with 7 treatments: 1) Forest (F) 2) 1st rotation at the young stage (R1y) 3) 1st rotation at the old stage (R1o) 4) 2nd rotation at the young stage (R2y) 5) 2nd rotation at the old stage (R2o) 6) 3rd rotation at the young stage (R3y) and 7) 3rd rotation at the old stage (R3o). It was observed that at 0-10 cm depth of soil, the forest (F) contributed the highest values in the total nitrogen of 1.79% and available potassium and magnesium of 99.56 and 108.86 mg/kg, respectively. The soil carbon stock was the highest at 17.25 t/ha, with the lowest bulk density value of 1.12 g/cm3 under the forest (F). However, there was no statistically significant difference in soil pH among the treatments. In the 3rd rotation of rubber plantation (R3), the total nitrogen, available phosphorus, potassium, magnesium and soil carbon stock were resulted in decreasing. Although, the young rubber plantation had better soil fertility, their soil carbon stocks were less than the old rubber plantation. The results also showed a significant difference in soil organic carbon content in the soil depths of 0-5, 5-10 and 10- 30 cm but no significant difference in 30-50 cm depth.

Article Details

How to Cite
Panklang, P. ., Chiarawipa, R., Sdoodee, S. ., Thoumazeau, A. ., & Brauman, A. . (2021). Effect of crop rotation in rubber plantations on some soil properties and carbon content. Khon Kaen Agriculture Journal, 49(4), 789–798. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/251385
Section
บทความวิจัย (research article)

References

กรมพัฒนาที่ดิน. 2548. ยางพารา. สำนักวิจัยและพัฒนาการจัดการที่ดิน กรมพัฒนาที่ดิน, กรุงเทพฯ.

นุชนารถ กังพิสดาร. 2554. คำแนะนำการใช้ปุ๋ยยางพารา. สถาบันวิจัยยาง กรมวิชาการเกษตร, กรุงเทพฯ.

พจนีย์ มอญเจริญ และทวีศักดิ์ เวียนศิลป์. 2544. คาร์บอนในดินของประเทศไทย. กรมพัฒนาที่ดิน, กรุงเทพฯ.

สถาบันวิจัยยาง. 2550. ข้อมูลวิชาการยางพารา 2550. สถาบันวิจัยยาง กรมวิชาการเกษตร, กรุงเทพฯ.

สำนักงานเศรษฐกิจการเกษตร. 2562. สถิติการเกษตรของประเทศไทย ปี 2561. ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย จำกัด, กรุงเทพฯ.

สำนักวิทยาศาสตร์เพื่อการพัฒนาที่ดิน. 2547. คู่มือวิเคราะห์ตัวอย่างดิน น้ำ ปุ๋ย พืช วัสดุปรับปรุงดิน และการวิเคราะห์เพื่อตรวจรับรองมาตรฐานสินค้า เล่ม 1. กรมพัฒนาที่ดิน, กรุงเทพฯ.

สุดารัตน์ แซ่อุ้ย. 2542. การวิเคราะห์อายุที่เหมาะสมในการปลูกทดแทนยางพาราในประเทศไทย. วิทยานิพนธ์ ปริญญาวิทยาศาสตร มหาบัณฑิต มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.

Abraham, J., and J.A. Chudek. 2007. Studies on litter characterization using 13C NMR and assessment of microbial activity in natural forest and plantation crops’ (teak and rubber) soil ecosystems of Kerala, India. Plant and Soil. 303: 265-267.

Back, G.R., and K.H. Hartge. 1986. Bulk density. P. 363-375. In: A. Klute. Methods of Soil Analysis Part 1. American Society of Agronomy, WI.

Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science. 47: 151-163.

Bray II, R.H., and L.T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Science. 59: 39-45.

Bremner, J.M. 1965. Total nitrogen. P. 1149-1237. In: C.A. Black. Method of Soil Analysis Part 2. American Society of Agronomy, WI.

Cheng C., R. Wang, and J. Jiang. 2007. Variation of soil fertility and carbon sequestration by planting Hevea brasiliensis in Hainan Island, China. Journal of Environmental Sciences. 19: 348-352.

Clemont-Dauphin, C., Y.M. Cabidoche, and J.M. Meynard. 2004. Effects of intensive monocropping of bananas on properties of volcanic soils in the uplands of the French West Indies. Soil Use and management. 20: 1-9.

Daddow, R.L., and G.E. Warrington. 1983. Growth-limiting Soil Bulk Densities as Influenced by Soil Texture. USDA-Forest Service, Colorado.

FAO. 2013. The State of Food and Agriculture 2013. Available: http://www.fao.org/publications/sofa/2013/en. Accessed May 1, 2020.

Iticha, B., M. Mohammed, and K. Kibret. 2016. Impact of deforestation and subsequent cultivation on soil fertility in Komto, Western Ethiopia. Journal of Soil Science and Environmental Management. 7: 212-221.

Karthikakuttyamma, M., P.R. Suresh, P. Prasannakumari, V. George, and R.S. Aiyer. 1998. Effect of continuous cultivation of rubber (Hevea brasiliensis) on morphological features and organic carbon, total nitrogen, phosphorous and potassium contents of soil. Indian Journal of Natural Rubber Research. 11: 73-79.

Kilmer, V.J., and L.T. Alexander. 1949. Methods of making mechanical analysis of soils. Soil Science. 68: 15-24.

Kucuker, M.A., M. Guney, H.V. Oral, N.K. Copty, and T.T. Onay. 2015. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey. Journal of Environmental Management. 147: 227-235.

Lawrence, D., P. D’Odorico, L. Diekmann, M. DeLonge, R. Das, and J. Eaton. 2007. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proceedings of the National Academy of Sciences. 104: 20696-20701.

Liu, C., J. Pang, M.R. Jepsen, X. Lu, and J. Tang. 2017. Carbon stock across a fifty year chronosequence of rubber plantations in tropical China. Available: https://www.mdpi.com/1999-4907/8/6/209/htm. Accessed May 1, 2020.

Lorenz, K., and R. Lal. 2005. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advances in Agronomy. 88: 35-66.

Maggiotto, S.R., D.D. Oliverira, C.J. Marur, S.M.S Stivari, M. Leclerc, and C. Wagner-Riddle, 2014. Potential carbon sequestration in rubber tree plantations in the northwestern region of the Parana State, Brazil. Acta Scientiarum Agronomy. 36: 239-245.

Peech, M. 1965. Hydrogen Ion Activity. P. 914-926. In: C.A. Black. Methods of Soil Analysis Part 2. American Society of Agronomy, WI.

Sakin, E. 2012. Relationships between of carbon, nitrogen stocks and texture of the Harran Plain soils in southeastern Turkey. Bulgarian Journal of Agricultural Science. 18: 626-634.

Solji, A., and A. Najafi. 2014. The impacts of ground-based logging equipment on forest soil. Journal of Forest Science. 60: 28-34.

Walkley, A., and A. Black. 1934. An examination of the Degiareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-28.

Yasin, S., A. Junaidi, E. Wahyudi, S. Herlena, and K.K. Darmawan. 2011. Changes of soil properties on various ages of rubber trees in Dhamasraya, West Sumatra, Indonesia. Journal of Tropical Soils. 15: 221-227.