Differentiation on secondary metabolites of toxigenic and atoxigenic Aspergillus flavus

Main Article Content

Chainarong Rattanakreetakul
Sansern Rangsuwan
Ratiya Pongpisutta
Pisut Keawmanee

Abstract

Gas chromatography-mass spectrometry (GCMS) is one of the major equipment for analyzing on the secondary metabolites producing by living cell, in order to compare between the metabolites and related processes. Fifteen isolates of Aspergillus spp. were isolated from the maize grain growing in Nakhon Pathom and Kanchanaburi provinces. They were identified by morphological characteristics, ITS-PCR sequencing analysis and aflatoxin production. Both fungal isolates were identified as A. flavus and aflatoxin production using ELISA kit, A. flavus isolate 8 was an atoxigenic isolate while isolate 17 was a toxigenic isolate with small size sclerotia production grouping into A. flavus S strain. The secondary metabolite compounds of the fungal extract from both isolates were analyzed by using GCMS compared to secondary metabolite compound types. Most compounds similar to the glucose-pyruvate pathway to the tricarboxylic acid cycle. Only 9-Octadecenoic acid, (E)- or oleic acid was discovered in the mycelium extract of the toxigenic A. flavus isolate 17. Moreover, oleic acid has reported on plays the crucial role in the aflatoxin production promoting to the aflatoxin in plant.

Article Details

How to Cite
Rattanakreetakul, C. ., Rangsuwan, S. ., Pongpisutta, R. ., & Keawmanee, P. . (2024). Differentiation on secondary metabolites of toxigenic and atoxigenic Aspergillus flavus. Khon Kaen Agriculture Journal, 48(4), 693–702. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/251877
Section
บทความวิจัย (research article)

References

พิสุทธิ์ เขียวมณี, ชัยณรงค์ รัตนกรีฑากุล, และรณภพ บรรเจิดเชิดชู. 2558. ประสิทธิภาพของอาหารสูตรดัดแปลงเพื่อตรวจสอบเชื้อราที่สร้างสารพิษปนเปื้อนบนเมล็ดข้าว. วิทยาศาสตร์เกษตร. 46(พิเศษ): 105-108.

สรรเสริญ รังสุวรรณ, ชัยณรงค์ รัตนกรีฑากุล, และรัติยา พงศ์พิสุทธา. 2562. การประมวลวิธีการตรวจสอบ Apergillus flavus ที่สร้างสารพิษอะฟลาท็อกซิน. วิทยาศาสตร์เกษตร. 50(พิเศษ): 191-194.

สรรเสริญ รังสุวรรณ, พิสุทธิ์ เขียวมณี, ชัยณรงค์ รัตนกรีฑากุล, และรัติยา พงศ์พิสุทธา. 2561. ศักยภาพของอาหารเลี้ยงเชื้อราเพื่อตรวจสอบเชื้อราปนเปื้อนในเมล็ดข้าวโพด. วิทยาศาสตร์เกษตร. 49(พิเศษ): 159-162.

Al-Wadai, A.S., M.R. Al-Othman, M.A. Mahmoud, and A.R.M. Abd El-Aziz. 2013. Molecular characterization of Aspergillus flavus and aflatoxin contamination of wheat grains from Saudi Arabia. Genet. Mol. Res.12: 3335-3352.

Beyhan, O., N. Yilmaz, S. Bulut, M. Aktas, and E. Ozsoy. 2011. Influence of storage on the aflatoxin and fatty acid composition in Turkish hazelnut (Coryllus avellana) varieties. Int. J. Agric. Biol. 13: 741–745.

Chang, P.K., B.W. Horn, and J.W. Dorner. 2005. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet. Biol. 42: 914–923.

Cotty, P. J. 1997 Aflatoxin-producing potential of communities of Aspergillus section Flavi from cotton producing areas in the United States. Mycol. Res. 101: 698–704.

Emara, H. A. 1997. Production of aflatoxin by Aspergillus parasiticus and its control. Mycotoxin Res. 13: 51.

Falade, T.D.O., P.K. Chrysanthopoulos, M.P. Hodson, Y. Sultanbawa, M. Fletcher, R. Darnell, S. Korie, and G. Fox. 2018. Metabolites identified during varied doses of Aspergillus species in Zea mays grains, and their correlation with aflatoxin levels. Toxins. 10: 187.

Frisvad, J.C, V. Hubka, C.N. Ezekiel, S.-B. Hong, A. Nováková , A.J. Chen, M. Arzanlou, T.O. Larsen, F. Sklenár, W. Mahakarnchanakul, R.A. Samson, and J. Houbraken. 2019. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 93: 1-63.

Hedayati, M.T., A.C. Pasqualotto, P.A. Warn, P. Bowyer, and D.W. Denning. 2007. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 153: 1677–1692.

International Agency for Research on Cancer. 2002. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 82: 1–556.

Kim, D.M., S.H. Chung, and H.S. Chun. 2011. Multiplex PCR assay for the detection of aflatoxigenic and non-aflatoxigenic fungi in meju, a Korean fermented soybean food starter. Int. J. Food. Microbiol. 28: 1402-1408.

Madla, S., D. Miura, and H. Wariishi. 2012. Optimization of extraction method for GC-MS based metabolomics for Filamentous fungi. Microbial Biochem. Technol. 4: 005-009.

Neergaard, P. 1977. Seed Pathology. The Macmillian Press Ltd., London, Great Britain.

Raper, K.B., and D.I. Fennell. 1965. The Genus Aspergillus. The William & Wilkins Company: Baltimore.

Tiwari, R.P., V. Mittal, G. Singh, T.C. Bhalla, S.S. Saini, and D.V. Vadehra. 1986. Effect of fatty acids on aflatoxin production by Aspergillus parasiticus. Folia Microbiol. 31: 120–123.

White, T.J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal RNA gene for phylogenetics. P. 315-322. In: M.A. Innis, D.H. Gelfend, J.J. Sninsky, and T.J. White. PCR Protocol: A Guide to Methods and Applications. Academic Press, San Diego.

World Health Organization. 2018. Aflatoxins. Food safety digest REF. No.: WHO/NHM/FOS/RAM/18.1. Available: https://www.who.int/foodsafety/FSDigest_Aflatoxins_EN.pdf. Accessed Oct. 1, 2019.

Zubair, A., Z. Ud-Din, Saleemullah, S.A. Khan, H.U. Shah, B.A. Khan, and E. Ali. 2011. Fatty acid profile and aflatoxin contamination of walnuts (Juglans regia). ARPN J. Agric. Biol. Sci. 6: 1-8.