Effects of ozone on physiology and yield of rice RD43

Main Article Content

Rutairat Phothi
Chonlada Dechakiatkrai Theerakarunwong
Pativit Sarapin

Abstract

Increased ozone is linked to increases an air pollution, causing a wide range of impacts that will affect ecology. Ozone, a secondary pollutant, produced via photochemical reaction between NOX, CO, CH4 and VOCs with sunlight. Further, the increasing of ozone trends significant in the most of country. This research aimed to study the effect of ozone to physiology and yield of rice cultivar RD43. The ozone concentrations at 40 ppm (O340); the initial concentration affect plant growth and 80 ppb (O380); the expected future concentration of ozone, compared to the control group were investigated for 3 weeks. The stem height, leaf area, tiller number, chlorophyll, panicle number, panicle length and spikelet per panicle were recorded. From the results, O380 significantly caused severe damage to rice RD43 by leaf area, tiller number, and chlorophyll decreased to 44.65 39.20 and 29.59% as compared to the control group (p ≤ 0.05), respectively. Likewise, the results obtained from the rice production, the panicle number was decreased to 47.85%, the panicle length was decreased to 20.31% and spikelet per panicle was decreased to 35.83% under ozone concentration at 80 ppb. Keywords: ozone, rice, yield

Article Details

How to Cite
Phothi, R. ., Dechakiatkrai Theerakarunwong, C. ., & Sarapin, P. . (2020). Effects of ozone on physiology and yield of rice RD43. Khon Kaen Agriculture Journal, 48(6), 1242–1253. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/252069
Section
บทความวิจัย (research article)

References

กรมควบคุมมลพิษ. 2561. รายงานสถานการณ์มลพิษของประเทศไทย ปี 2561. กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม, กรุงเทพฯ.

สถาบันวิจัยข้าว. 2548. การใช้แผ่นเทียบสี (Leaf Color Chart) เพื่อการจัดการปุ๋ยไนโตรเจนในการปลูกข้าว

นาชลประทาน. แหล่งข้อมูล: http://www.ricethailand.go.th/rkb3/Eb_015.pdf. ค้นเมื่อ 23 มกราคม 2561.

Ainsworth, E.A. 2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Change Biol. 14: 1642-1650.

Akhtar, N., M. Yamaguchi, H. Inada, D. Hoshino, T. Kondo, R.F. Fukami, and T. Izuta. 2010. Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.). Environ Pollut. 158: 2970-2976.

Banerjee, A. and A. Roychoudhury. 2019. Chapter 19 - Rice Responses and Tolerance to Elevated Ozone. In Hasanuzzaman M., M. Fujita, K. Nahar, and J. K. Biswas (Eds.). Advances in Rice Research for Abiotic Stress Tolerance. Woodhead Publishing.

Calatayud, A. and E. Barreno. 2001. Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ Pollut. 115: 283-289.

Felzer, B.S., T. Cronin, J.M. Reilly, J.M. Melillo, and X. Wang. 2007. Impacts of ozone on trees and crops. CR GEOSCI. 339: 784 - 98.

Feng, Z., E. Hu, X. Wang, L. Jiang, and X. Liu. 2015. Ground-level O3 pollution and its impacts on food crops in China: A review. Environ Pollut. 199: 42-48.

Fiscus, E.L., F.L. Booker, and K.O. Burkey. 2005. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 28: 997-1011.

Foyer, C.H., P. Descourvières, and K.J. Kunert. 1994. Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell Environ. 17: 507–523.

Frei, M. 2015. Breeding of ozone resistant rice: Relevance, approaches and challenges. Environ Pollut. 197: 144-155.

IPCC. 2007. Climate Change. 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Solomon S, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Kinose, Y., Y. Fukamachi, S. Okabe, H. Hiroshima, M. Watanabe, T. Izuta. 2017. Nutrient supply to soil offsets the ozone-induced growth reduction in Fagus crenata seedlings. Trees 31: 259–272.

Kumari, S., M. Agrawal, and S. Tiwari. 2013. Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: Pigments, metabolites, antioxidants, growth and yield. Environ Pollut. 174: 279-288.

Kumari, S., M. Agrawal, and A. Singh. 2015. Effects of ambient and elevated CO2 and ozone on physiological characteristics, antioxidative defense system and metabolites of potato in relation to ozone flux. Environ Exp Bot. 109: 276-287.

Phothi, R., C. Umponstira, C. Sarin, W. Siriwong, and N. Nabheerong. 2016. Combining effects of ozone and carbon dioxide application on photosynthesis of Thai jasmine rice (Oryza sativa L.) cultivar Khao Dawk Mali 105. Aust J Crop Sci. 10: 591-597.

Phothi, R. and D.C. Theerakarunwong. 2017. Effect of chitosan on physiology, photosynthesis and biomass of rice (Oryza sativa L.) under elevated ozone. Aust J Crop Sci. 11: 624-630.

Saitanis, C.J., S.M. Bari, K.O. Burkey, D. Stamatelopoulos, and E. Agathokleous. 2014. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environ Sci Pollut Res Int. 21: 13560-13571.

Sanz, J., I. González-Fernández, H. Calvete-Sogo, J.S. Lin, R. Alonso, R. Muntifering, and V. Bermejo. 2014. Ozone and nitrogen effects on yield and nutritive quality of the annual legume Trifolium cherleri. Atmos. 94: 765-772.

Sarkar, A. and S.B. Agrawal. 2010. Elevated ozone and two modern wheat cultivars: An assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ Exp Bot. 69: 328-337.

Sarkar, A. and S.B. Agrawal. 2012. Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone by using open top chambers. J Environ Manage. 95: S19-S24.

Shang, B., X. Yuan, P. Li, Y. Xu, and Z. Feng. 2019. Effects of elevated ozone and water deficit on poplar saplings: Changes in carbon and nitrogen stocks and their allocation to different organs. Forest Ecol Manag. 441: 89-98.

Umponstira, C., W. Pimpa, and S. Nanegrungsun. 2006. Physiological and biochemical responses of cowpea (Vigna unguiculata (L.) Walp) to ozone. SJST. 28: 861-869.

Wu, H., Q. Li, C. Lu, L. Zhang, J. Zhu, F.A. Dijkstra, and Q. Yu. 2016. Elevated ozone effects on soil nitrogen cycling differ among wheat cultivars. Appl Soil Ecol. 108 (Supplement C): 187-194.

Zhu, D.W., H.C. Zhang, B.W. Guo, K. Xu, Q.G. Dai, H.Y. Wei, H. Gao, Y.J. Hu, P.Y. Cui, and Z.Y. Huo. 2017. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agric. 16: 1018-1027.