Labile forms of organic carbon pool in sandy soil as affected by land use change from sugarcane to rubber tree plantations in Northeast Thailand

Main Article Content

Porntip Puttaso
Alain Brauman
Phrueksa Lawongsa

Abstract

Soil organic carbon (SOC) play an important role on soil quality and act as indicator of land use change. The objective of this study aimed to investigate changes in labile organic carbon pool including soil microbial biomass carbon (MBC) and permanganate-oxidizable C (POXC), soil organic carbon stock (SOC stock), and relating to soil properties under land use change by conversion from sugarcane to rubber tree plantation at different ages. Four study plots were conducted including 1) sugarcane plantation 2) 4-5 years rubber tree plantation 3) 11-12 years rubber tree plantation and 4) 22-23 years rubber tree plantation. Soil was loamy sand with high sand (79-83.6%) and low clay (<9.34%) contents. The result of this study found that labile organic carbon pool both MBC and POXC in soil planted rubber tree had higher than sugarcane plantation, with the highest in 22-23 years rubber tree plantation. The result also found the POXC was increased by rubber tree age (11-23 years) which clearly significantly different for 2-3 times from sugarcane plantation. In addition, the SOC stock was increased by rubber tree age with the highest in 22-23 years rubber tree plantation (304.44 mg C ha1). Increasing of labile carbon, especially accumulated POXC and SOC, resulted in a decrease in soil bulk density. These findings reflected the labile organic carbon pool as POXC is a sensitive indicator which can be used for monitoring and evaluation on soil quality under land use change and soil management to develop suitable guidelines for soil management.

Article Details

How to Cite
Puttaso, P. ., Brauman, A. ., & Lawongsa, P. . (2021). Labile forms of organic carbon pool in sandy soil as affected by land use change from sugarcane to rubber tree plantations in Northeast Thailand . Khon Kaen Agriculture Journal, 49(5), 1183–1193. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/252582
Section
บทความวิจัย (research article)

References

กรมพัฒนาที่ดิน. 2558. สถานภาพทรัพยากรดินและที่ดินของประเทศไทย. กระทรวงเกษตรและสหกรณ์.

ระวี เจียรวิภา, สุรชาติ เพชรแก้ว, มนตรี แก้วดวง, และ วิทยา พรหมมี. 2555. การประเมินการเก็บกักคาร์บอนและรายได้จากการชดเชยคาร์บอนในสวนยางพารา. วารสารวิทยาศาสตร์บูรพา. 17: 91-102.

ศุภธิดา อ่ำทอง, ทวี ชัยพิมลผลิน และชาคริต โชติอมรศักดิ์. 2561. ความสัมพันธ์ของคาร์บอนอินทรีย์โดยวิธีเพอร์แมงกาเนตออกซิไดส์เซเบิลกับอินทรียวัตถุเพื่อเป็นดัชนีคุณภาพของดินปลูกลำไยและดินปลูกข้าว. วารสารวิจัยและส่งเสริมวิชาการเกษตร. 36: 1-10.

อรรณพ พุทธโส. 2559. การกักเก็บคาร์บอนในดินตัวแทนหลักภาคตะวันออกเฉียงเหนือ. เอกสารวิชาการเลขที่ 01/06/59. กองสำรวจดินและวิจัยทรัพยากรดิน กรมพัฒนาที่ดิน กระทรวงเกษตรและสหกรณ์.

Amato, M., and J.N. Ladd. 1988. Assay for microbial biomass based on ninhydrin reactive nitrogen in extracts of fumigated soil. Soil Biology and Biochemistry. 20: 107-114.

Anderson, J.M, and K.H. Domsch. 1990. Application of ecophysiological quotiens (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biology and Biochemistry. 22: 251-255.

Aumtong, S., J. Magid, S. Bruun, and A.de. Neergaard. 2009. Relating soil carbon fractions to land use in sloping uplands in northern Thailand. Agriculture, Ecosystems and Environment. 131: 229-239.

Back, G.R., and K.H. Hartge. 1986. Bulk density. P. 363-375. In: A. Klute, Ed. Methods of soil analysis. Part 1, Agronomy No.9, 2ndedition. American Society of Agronomy, Madison, WI.

Benbi, D.K., K. Brar, A. S. Toor, and P. Singh. 2015. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma. 237-238: 149-158.

Blair, G.J., R.D. Lefroy, and L. Lisle. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Crop Pasture Science. 46: 1459-1466.

Bossuyt, B., M. Heyn, and M. Hermy. 2002. Seed bank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forest vegetation. Plant Ecology. 162: 33-48.

Christensen, B.T. 1992. Physical fractionation of soil and organic matter in primary particle size and density seperates. Advances in soil science. Springer New York.

Christensen, B.T., and A. E. Johnston. 1997. Soil organic matter and soil quality lessons learned from long-Term experiments at Askov and Rothamsted. Development of Soil Science. 25: 399-430.

Cullman, S.W., S.S. Snapp, M.A. Freeman, M.E. Schipanski, J. Beniston, R. Lal, L.E. Drinkwater, A.J. Franzluebbers, J.D. Glover, A.S. Grandy, J. Lee, S.B. Mirksy, J.T.Spargo, and M.M. Wander. 2012. Permanganate oxidizable carbon reflects a processes soil fraction that is sensitive to management. Soil Science Society of America Journal. 76: 494-504.

Golchin A., P. Clarke, J.M. Oades, and J.O. Skjemstad. 1995. The effects of cultivation on the composition of organic matter and structural stability of soils. Australian Journal of Soil Research. 33: 975-993.

Guan, F., X. Tang, S. Fan, J. Zhao, and C. Peng. 2015. Changes in soil carbon and nitrogen stocks followed by the conversion from secondary forest to Chinese fir and Meso bamboo plantations. Catena. 133: 455-460.

Haynes, R.J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances of Agronomy. 85: 221-268.

Kalambukattu, J.G., R. Singh, A.K. Patra, and K. Arunkumar. 2013. Soil carbon pools and carbon management index under different land use systems in the central Himalayan region. Acta Agriculturae Scandinavica B-S P. 63: 200-205.

Krischbaum, M.U.F. 2000. Will changes in soil organic carbon act as as a positive or negative feed-back on global Warming? Biogeochem. 48: 21-51.

Lal, R. 2002. Soil carbon dynamics in cropland and rangeland. Environmental Pollution. 116: 353-362.

Lawongsa, P., P. Puttaso, and N. Kaewjampa. 2016. Carbon stock assessment under different ages of rubber tree plantation. Asia-Pacific Journal of Science and Technology. 21: 1-7.

Llorente, M., B. Glaser, and M.B. Turrion. 2010. Storage of organic and black carbon in density fractions of calcareous soils under different land uses. Geoderma. 159: 31-38.

Mujuru, L., A. Mureva, E.J. Velthorst, and M.R. Hoosbeek. 2013. Land use and management effect on soil organic matter fraction in Rhodic Ferralsols and Haplic Arenosols in Bindura and Shamva district of Zimbabwe. Geoderma. 209-210: 262-272.

Poeplau, C., and A. Don. 2013. Sensitivity of soil organic carbon stocks and fractions to different land use changes across Europe. Geoderma. 192: 189-201.

Puttaso, P., P. Panomkhum, R. Rungthong, A. Promkhumbut, N. Kaewjampa, and P. Lawongsa. 2015. Microbial biomass and activity under different ages of rubber tree plantations in northeast Thailand. Khon Kaen Agriculture Journal. 43(Suppl 2): 963 - 967.

Singh, S.K., A.K. Singh, B.K. Sharma, and J.C. Tarafdar. 2007. Carbon stocks and organic carbon dynamics In soils of Rajasthan. Jounal of Arid of environmental. 68: 408-421.

Smith P. 2008. Land use change and soil organic carbon dynamics. Nutrient Cycle Agroecosystems. 81: 169-178.

Smith, P., D.S. Powlson, J.U. Smith, P. Fallooon, and K. Coleman. 2000. Meeting Europes climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology. 6: 525-539.

Sparling G.P., and A.W. West. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biology Biochemistry. 20: 337-343.

Van Soest, Van Soest 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal - Association of Official Analytical Chemists. 50: 50-55.

Van Soest. Van Soest. 1968. Determination of lignin and cellulose in acid-detergent fiber with permanganate. Journal - Association of Official Analytical Chemists. 51: 780-785.

Vieira, F.C.B., C. Bayer, J.A. Zanatta, J. Dieckow, J. Mielniczuk, and Z.L. He. 2007. Carbon management index based on physical fraction of soil organic matter in as Acrisol under long-term no-till cropping systems. Soil and Tillage Research. 96: 317-327.

Walkley, A., and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38.

Warembourg, F.R., C. Roumet, and F. Lafont. 2003. Differences in rhizosphere carbon-partitioning among plant species of different families. Plant and Soil. 256: 347-357.

Weil, R.R., K.R. Islem, M.A. Stien, J.J. Gruver, and S.E. Samson-Liebig. 2003. Estimate active carbon for soil quality assessment: a simplified method for laboratory and field use. American Journal of Alternative Agriculture. 18: 1-17.

Wright, A.L., F.M. Hons, and J.E. Matocha. 2005. Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Apply Soil Ecology. 29: 85-92.

Zhang, L., Z. Xie, R.F. Zhao, and Y.J. Wang. 2012. The impact of land use change on soil organic carbon and labile organic carbon stocks in the Longzhong region of Loess Plateau. Journal of Arid Land. 4: 241-250.