Effects of natural light and light-emitting diode (LED) light on photosynthetic efficiency and other related parameters in rice

Main Article Content

Tepsuda Rungrat
Nattachai Thaw-U-Thum

Abstract

The objective of this study was to investigate the effect of natural light and light-emitting diode (LED) on photosynthetic efficiency and chlorophyll contents of five commercial rice varieties. The experiment was laid out in split plot in complete randomized design (split plot in CRD) with 5 replications.The main plot was the growth conditions (natural light (700-950  µmol/m2/s) and LED light (850-1,000 µmol/m2/s), and the sub plot was five rice varieties including Rice Berry (RB), RD10, Chainat1 (CN1), Phitsanulok2 (PSL2), and Hom-Supanburi (HOM-SP). The results showed that plants grown under LED exhibited a greater performance in maximum quantum efficiency of photosystem II (Fv/Fm) with an average of 0.788 in comparison to plant grown under natural light (Fv/Fm=0.72). The greenness of rice leaf grown under LED was higher than under natural light condition with the average of 43.75 and 33.85 SPAD unit, respectively. Chlorophyll a, b, and total chlorophyll contents showed significantly differences among varieties and between the growth conditions. The variation of chlorophyll a and b contents in rice leaves was higher under LED than natural light in HOM-SP, RB, and RD10. The result for the electron transport rate (ETR) showed that there was different between LED and natural grown plants. Plants grown under LED light showed a much higher ETR than natural light plant with the ETR ranging between 2.98 – 186.82 µmol/m2/s and 1.416 – 88.169 µmol/m2/s, respectively. There is variation of traits in response to light source which tends to improve photosynthetic efficiency significantly, as well as the interaction between genetic and environment.

Article Details

How to Cite
Rungrat, T. ., & Thaw-U-Thum, N. . (2021). Effects of natural light and light-emitting diode (LED) light on photosynthetic efficiency and other related parameters in rice . Khon Kaen Agriculture Journal, 49(5), 1279–1287. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/252590
Section
บทความวิจัย (research article)

References

กองวิจัยและพัฒนาข้าว. 2559. องค์ความรู้เรื่องข้าว. กรมการข้าว. แหล่งข้อมูล: http://www.ricethailand.go.th/rkb3/. ค้นเมื่อ 29 ตุลาคม 2563.

นงลักษณ์ พยัคฆศิรินาวิน, อุบล ชินวัง, และสุวัฒน์ ธีระพงษ์ธนากร. 2557. การประยุกต์ใช้เทคนิคคลอโรฟิลล์ฟลูออเรสเซ็นท์กับพืชสวน. การเกษตรราชภัฏ. 13: 37-46.

พิชญ์สินี เพชรไทย, และธรรมศักดิ์ ทองเกตุ. 2560. ผลของความเข้มแสงและระยะเวลารับแสงต่อการเจริญเติบโตและคุณภาพของผักกาดหอม. วารสารพืชศาสตร์สงขลานครินทร์. 4: 54-59.

ทิวา จามระรี, ปารวี กาญจนประโชติ, สมเกียรติ จรุรงค์ล้ำเลิศ และสริริวัฒน์ สาครวาสี. 2560. อิทธิพลของแสงไฟแอลอีดีต่อการเจริญเติบโตของต้นพิทูเนียพันธุ์ Purple ภายใต้ระบบการปลูกพืชแบบกึ่งปิด. น. 184-191. ใน: ประชุมวิชาการระดับชาติ พิบูลสงครามวิจัย ครั้งที่ 3 ประจำปี พ.ศ. 2560 วันที่ 23 – 24 มีนาคม 2560. คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏพิบูลสงคราม, พิษณุโลก.

สมาคมผู้ส่งออกข้าวไทย. 2561. สรุปสถานการณ์ส่งออกข้าวไทยปี 2660 และแนวโน้มและทิศทางการส่งออก ข้าวไทยปี 2561. สมาคมผู้ส่งออกข้าวไทย. แหล่งข้อมูล: http://www.thairiceexporters.or.th. ค้นเมื่อ 3 กันยายน 2562.

Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts, polyphenolexidase in beta vulgaris. Plant Physiology. 24: 1–15.

Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology. 59: 89–113.

Brown, T.B., R. Cheng, X.R. Sirault, T. Rungrat, K.D. Murray,M. Trtilek, R.T. Furbank, M. Badger, B.J. Pogson, and J.O. Borevitz. 2014. TraitCapture: genomic and environment modelling of plant phenomic data. Current Opinion in Plant Biology. 18: 73–79.

Chen, C.C., M.Y. Huang, K.H. Lin, S.L. Wong, W.D. Huang, and C.M. Yang. 2014. Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza sativa L.). Research Journal of Biotechnology. 9: 15-24.

Ghosh, M., D.K. Swain, M.K. Jha, V.K. Tewari, and A. Bohra. 2020. Optimizing chlorophyll meter (SPAD) reading to allow efficient nitrogen use in rice and wheat under rice-wheat cropping system in eastern India. Plant Production Science. 23: 270-285.

Hasan, M.M., T. Bashir, R. Ghosh, S.K. Lee, and H. Bae. 2017. An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules. 22: 1420.

Kobayashi, K., T. Amore, and M. Lazaro. 2013. Light-Emitting Diodes (LEDs) for miniature hydroponic lettuce. Optics and Photonics Journal. 3: 74–77.

Kumagai, E., A. Araki, and F. Kubota. 2009. Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) Plant Production Science. 12: 50–53.

Kozai, T. 2013. Plant factory in Japan - current situation and perspectives. Chronica. Horticulture. 53: 8-11.

Krause, G., and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology. 42: 313–349.

Li, Y., Y. Gao, X. Xu, Q. Shen, and S. Guo. 2009. Light-saturated photosynthetic rate in high nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany. 60: 2351–2360.

Liu, Q.H., X. Wu, T. Li, J.M. Ma, and X.B. Zhou. 2013. Effects of elevated air temperature on physiological characteristics of flag leaves and grain yield in rice. Chilean journal of agricultural research. 73: 85-90.

Misra, A.N, M. Misra, and R. Singh. 2012. Chlorophyll Fluorescence in Plant Biology. P.176-190. In: Biophysics. Janeza Trdine 9, 51000 Rijeka, Croatia.

Pedrós, R., I. Moya, Y. Goulas, and S. Jacquemoud. 2008. Chlorophyll fluorescence emission spectrum inside a leaf. Photochemical and Photobiological Science. 7: 498–502.

Qu, M., G. Zheng, S. Hamdani, J. Essemine, Q. Song, H. Wang, C. Chu, X. Sirault, and X. Zhua. 2017. Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity survey. Plant Physiology. 175: 248-258.

RStudio Team. 2019. RStudio: Integrated Development for R. RStudio, Inc. Massachusetts, USA. Available: http://www.rstudio.com/. Accessed March 2019

Rungrat, T., M. Awlia, T. Brown, R. Cheng, X. Sirault, J. Fajkus, M. Trtilek, B. Furbank, M. Badger, M. Tester, B.J. Pogson, J.O. Borevitz, and P. Wilson. 2016. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery. The Arabidopsis Book. 14: e0185.

Shah, S.H., R. Houborg, and M.F. McCabe. 2017. Response of chlorophyll, carotenoid and spad-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy. 7:61.

Wojciechowska, R., O. Dtugosz-Grochowska, A. Kotton, and M. Zupnik. 2015. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Scientia Horticulturae. 187: 80-86.

Yamori, W., G. Zhang, M. Takagaki, and T. Maruo. 2014. Feasibility study of rice growth in plant factories. Rice Research. 2: 119.

Yang, H., J. Yang, Y. Lv, and J. He. 2014. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status. Plant Production Science. 17: 81-92.

Yuan, Z., Q. Cao, K. Zhang, S.T. Ata-Ul-Karim, Y. Tian, Y. Zhu, W. Cao, and X. Liu. 2016. Optimal leaf positions for SPAD meter measurement in rice. Frontiers in Plant Science. 7: 719.

Zhang, S.X., D.D. Huang, X.Y. Yi, S. Zhang, R. Yao, C.G. Li, A. Liang, and X.P. Zhang. 2016. Rice yield corresponding to the seedling growth under supplemental green light in mixed light-emitting diodes. Plant Soil and Environment. 62: 222-229.