Developing DNA markers specific to Waxy gene for application in the breeding program of black glutinous rice from Riceberry rice

Main Article Content

Vaiphot Kanjoo
Ratha Pha
Waravut Losuk
Nirut Potapunya
Theerayut Toojinda

Abstract

Breeding program of fragrant black glutinous rice from a non-glutinous rice cultivar Riceberry (RB) will use RD6 glutinous rice as the donor parent to for introgression of Waxy gene which regulates amylose content in rice grain. It affects to cooking and eating qualities and determines the types of glutinous or non-glutinous rice. This research aims to develop the DNA markers specifics to Waxy gene for genotyping in breeding program of fragrant black glutinous rice with high nutrition in RB genetic background. Three DNA markers including waxy-1, waxy-2 and waxy-3 were developed specific to the region of 5' end, middle and 3' end of Waxy gene, respectively. There were used to survey the genotypes of 61 varieties of rice germplasm. Genotyping results displayed 6, 3 and 2 DNA band patterns from those DNA markers, respectively. Of the three markers, only waxy-1 marker can be separated RB allele from glutinous rice RD6. Therefore, waxy-1 marker was genotyped in the F1 rice population from the crossing between RB x RD6. The result presented that F1 plant clearly displayed heterozygous genotype of Waxy allele. The present study indicates that the waxy-1 marker can be used for following a glutinous rice RD6 allele of Waxy gene which was introgressed into the improved rice lines derived from this crossing. In addition, this DNA markers may be applied in other rice breeding projects.

Article Details

How to Cite
Kanjoo, V. ., Pha, R. ., Losuk, W. ., Potapunya, N. ., & Toojinda, T. . (2021). Developing DNA markers specific to Waxy gene for application in the breeding program of black glutinous rice from Riceberry rice . Khon Kaen Agriculture Journal, 49(5), 1288–1300. Retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/252591
Section
บทความวิจัย (research article)

References

กรมการข้าว. 2559. องค์ความรู้เรื่องข้าว เวอร์ชั่น 3.0: วิทยาการก่อนและหลังการเก็บเกี่ยว. แหล่งข้อมูล:
http://www.ricethailand.go.th/rkb3/title-index.php-file=content.php&id=6-2.htm. ค้นเมื่อ 22 สิงหาคม 2561.

เครือวัลย์ อัตตะวิริยะสุข. 2536. คุณภาพเมล็ดข้าวทางกายภาพและการแปรสภาพเมล็ด. น. 1-53. ใน: เอกสารประกอบการบรรยายฝึกอบรมหลักสูตรวิทยาการหลังการเก็บเกี่ยว ณ ศูนย์วิจัยข้าวพัทลุง. กรมวิชาการเกษตร, กรุงเทพฯ.

ชลธิดา ชลธิศชโลทร, นภา ตั้งเตรียมจิตมั่น, เบญจวรรณ ชิวปรีชา, และอรสา สุริยาพันธ์. 2563. ปัจจัยที่มีผลต่อการวิเคราะห์อะไมโลสในตัวอย่างข้าวเจ้าด้วยวิธีจับกับไอโอดีน. วารสารวิทยาศาสตร์และเทคโนโลยี. 28(11): 1929-1941.

ฉันทมาศ เชื้อแก้ว, พัชรี ลาโคตร, นพมาศ นามแดง, วชิราพรรณ บุญญาพุทธิพงศ์, และสุรีพร เกตุงาม. 2560. ความผันแปรของยีน Waxy ที่มีผลต่อปริมาณอะไมโลสในข้าวพื้นเมืองอุบลราชธานี. แก่นเกษตร. 45(ฉบับพิเศษ 1): 1142-1148.

อรอนงค์ วินัยกุล. 2550. ข้าว: วิทยาศาสตร์และเทคโนโลยี. สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.

Aoki, N., T. Umemoto, S. Yoshida, T. Ishii, O. Kamijima, U. Matsukura, and N. Inouchi. 2006. Genetic analysis of long chain synthesis in rice amylopectin. Euphytica. 151: 225-234.

Caetano, A. 1997. Resolving DNA amplification products using polyacrylamide gel electrophoresis and silver staining, P.119-134. In: R. M. Micheli, and R. Bova. (Eds.), Fingerprinting methods based on PCR, Springer-Verlag, Heidelberg.

Cai, X. L., Z. Y. Wang, Y. Y. Xing, Y. Y. Xing, J. L. Zhang, and M. M. Hong. 1998. Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. The Plant Journal. 14(4): 459-465.

Chen, M. H., C. Bergman, S. Pinson, and R. Fjellstrom. 2008. Waxy gene haplotypes: associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. Journal of Cereal Science. 47: 536-545.

CIRAD. 2019. DARwin: dissimilarity analysis and representation for windows. Available: http://darwin.cirad.fr/. Accessed Feb. 20, 2020.

Gao, L., M. Zhou, R. Chen, H. Gao, Q. Yan, W. Zhou, and G. Deng. 2012. Developing and validating the functional marker of rice waxy gene, M-Wx. Rice Genomics and Genetics. 3(10): 61-65.

Juliano, B.O. 2007. Rice chemistry and quality, Muñoz, Nueva Ecija, Philippines: Philippine Rice Research Institute.

Juliano, B. O., C. M. Perez, and A. P. Resurreccion. 2009. Apparent amylose content and gelatinization temperature types of Philippine rice accessions in the IRRI gene bank. Philippine Agricultural Scientist. 92(1): 106-109.

Juliano, B. O., C. M. Perez, A. B. Blakeney, T. Castillo, N. Kongseree, B. Laignelet, E. T. Lapis, V. V. S. Murty, C. M. Paule, and B. D. Webb. 1981. International cooperative testing on the amylose content of milled rice. Starch. 33(5): 157-162.

Jantaboon, J., M. Siangliw, S. Im-mark, W. Jamboonsri, A. Vanavichit, and T. Toojinda. 2011. Ideotype breeding for submergence tolerance and cooking quality by marker-assisted selection in rice. Field Crops Research. 123(3): 206-213.

Larkin, P. D., and W. D. Park. 2003. Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Molecular Breeding. 12: 335–339.

Prathepha, P., and V. Baimai. 2004. Variation of Wx microsatellite allele, waxy allele distribution and differentiation of chloroplast DNA in a collection of Thai rice (Oryza sativa L.). Euphytica. 140: 231–237.

Sano, Y. 1984. Differential regulation of waxy gene expression in rice endosperm. Theoretical and Applied Genetics. 68: 467–473.

Sano, Y., M. Katsumata, and K. Okuno. 1986. Genetic studies of speciation in cultivated rice. 5. Inter- and intraspecific differentiation in the waxy gene expression of rice. Euphytica. 35: 1–9

Wanchana, S., T. Toojinda, S. Tragoonrung, and A. Vanavichit. 2003. Duplicated coding sequence in the waxy allele of tropical glutinous rice (Oryza sativa L.). Plant Science Letters. 165: 1193–1199.

Wang, Z. Y., Z. L. Wu, Y. Y. Xing, F. G. Zheng, X. L. Guo, W. G. Zhang, and M. M. Hong. 1990. Nucleotide sequence of rice waxy gene. Nucleic Acids Research. 18: 5898.

Wang, Z. Y., F. Q. Zheng, G. Z. Shen, J. P. Gao, P. S. Snustad, M. G. Li, J. L. Zhang, and M. H. Hong. 1995. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. The Plant Journal. 7(4): 613-622.

Yamanaka, S., I. Nakamura, K. N. Watanabe, and Y. Sato. 2004. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theoretical and Applied Genetics. 108: 1200–1204.

Yi, M., T. Nwea, A. Vanavichit, W. Chai-aree, and T. Toojinda. 2009. Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crops Research. 113: 178-186.

Yunyan, F., Y. Jie, W. Fangquan, F. Fangjun, L. Wenqi, W. Jun, X. Yang, Z. Jinyan, and H. Weigong. 2019. Production of two elite glutinous rice varieties by editing Wx gene. Rice Science. 26(2): 118-124.

Zhou, L., S. Chen, G. Yang, W. Zha, H. Cai, S. Li, Z. Chen, K. Liu, H. Xu, and A. You. 2018. A perfect functional marker for the gene of intermediate amylose content Wx-in in rice (Oryza sativa L.). Crop Breeding and Applied Biotechnology. 18(1): 103-109.