Extraction of Phenolic Compounds from Waste Coconut Coir Dust Using Ultrasound-Assisted Solvent Extraction
Main Article Content
Abstract
In the present study, phenolic compounds were extracted from waste coconut coir dust,
a by-product of coconut manufacturing process, for value-added. The objective of this research was
to determine the optimal extraction condition of total phenolic contents from coconut coir dust using
ultrasound-assisted solvent extraction. In the extraction, three main parameters: solvent types, extraction
temperature and extraction time were used to determine the optimal extraction condition of phenolic
compounds from the sample. It was found that the extraction of sample with 50% (v/v) ethanol at 30 ºC for
120 minutes gave the highest crude extract yield (29.57% w/w on dry basis) and the highest total phenolic
content (951.33 μg GAE/g). The antioxidant activities of crude extract from the optimal extraction condition
was further investigated by comparing the two most common radical scavenging assays namely, the
1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS).
The results showed that the crude extract exhibited strong antioxidant activities with IC50 at 362.77μg/ml
by DPPH, and 11.96 μg/ml by ABTS methods, respectively.
Article Details
King Mongkut's Agricultural Journal
References
มะพร้าวจังหวัดประจวบคีรีขันธ์. ว. เกษตรพระจอมเกล้า 32(3): 45-51.
วรัญญา วงศ์วานิช และกิตติชัย บรรจง. 2559. ปัจจัยที่มีผลต่อการสกัดน้ำมันเมล็ดองุ่นด้วยวิธีการแช่และการใช้คลื่นเสียงความถี่สูง
ช่วยสกัด. ว. เกษตรพระจอมเกล้า 34(3): 9-21.
Chotimarkon, C., S. Benjakul and N. Silalai. 2008. Antioxidant components and properties of five long-grained rice bran
extracts from commercial available cultivars in Thailand. Food Chem. 111: 636-841.
Etim, U.J., S.A. Umoren and U.M. Eduok. 2016. Coconut coir dust as a low cost adsorbent for the removal of cationic dye
from aqueous solution. J. Saudi Chem. Soc. 20: S67–S76.
Hagerman, A.E., K.M. Riedl, G.A. Jones, K.N. Sovik, N.T. Ritchard, P.W. Hartzfeld and T.L. Riechel. 1998. High molecular
weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46: 1887-1892.
Israel, A.U., R.E. Ogali, O. Akaranta and I.B. Obot. 2011. Extraction and characterization of coconut (Cocos nucifera L.)
coir dust. Songklanakarin J. Sci. Technol. 33(6): 717-724.
Murray, J.C., J.A. Burch, R.D. Streilein, M.A. Lannacchione, R.P. Hall and S.R. Pinnell. 2008. A tropical antioxidant solution
containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused
by ultraviolet irradiation, J. Am. Acad. Dermatol., 59: 418-425.
Olajuyigbe, O.O. and A.J. Afolayan. 2011. Phenolic content and antioxidant property of the bark extracts of Ziziphus mucronata
Willd. subsp. mucronata Willd. BMC Complement. Altern. Med., 130(11): 1-8.
Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans. 1999. Antioxidant activity applying an improved
ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26: 1231-1237.
Rodrigues, S. and G.A.S. Pinto. 2007. Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell
powder. J. Food Eng. 80: 869-872.
Rodrigues, S., G.A.S. Pinto and F.A.N. Fernandes. 2008. Optimization of ultrasound extraction of phenolic compounds from
coconut (Cocos nucifera) shell powder by response surface methodology. Ultrason. Sonochem. 15: 95-100.
Singleton, V.L. and J..A. Rossi. 1965. Colorimetry of total phenolics and phosphomolybdicphosphotungstic acid reagents.
Am. J. Enol. Vitic. 6: 144-158.
Siramon, P. and Y. Ohtani. 2007. Antioxidative and antiradical activities of Eucalyptus camaldulensis leaf oils from Thailand.
J. Wood Sci. 53(6): 498-504