A Study of Soils with Redoximorphic Features in Lowland-Upland Transition Zone of Khorat Basin

Main Article Content

มัชฌิมา คำลอย
เสาวนุช ถาวรพฤกษ์
ณัฐพล จิตมาตย์
เอิบ เขียวรื่นรมณ์

Abstract

A study of soils with redoximorphic features in lowland-upland transition zone of Khorat Basin
was carried out on six representative areas for their morphology, physicochemical properties,
micromorphological and mineralogical characteristics to assess fertility level, fertility capability soil
classification and land suitability for economic crops. Results revealed that Khorat Basin has undulating
surface on an elevation range of 100-200 m MSL. All soils are highly developed having low fertility. They
developed on wash over residuum from sandstone, wash, alluvium, alluvium over residuum. Pedon 1 does
not have redoximorphic features. Pedons 2 and 3 show the features at a depth of 90 and 72 cm,


respectively. Pedons 4-6 show redoximorphic features starting from the soil surface. The soils are
Kandiustults, Kandiustalfs, Plinthaquults, Plinthaqualfs and Endoaqualfs. Bulk density of the soils ranges
from moderately low to moderately high (1.34-1.71 Mg m-3), field capacity at 41-72% by weight., permanent
wilting point at 40-61% by weight moisture content, available water capacity 3-10% by weight.
The soils pH are extremely acid to neutral (pH 4.04-6.76) and they have very low to moderately low
organic matter (0.67-13.46 g kg-1), very low total nitrogen (0-0.49 g kg-1), very low to high available
phosphorus (0.70-32.67 mg kg-1), very low available potassium (2.36-28.45 mg kg-1), moderately low to
moderate cation exchange capacity (1-11 cmol kg-1), very low to low total extractable bases (0.14-6.72
cmol kg-1), very low to moderate extractable acidity (0.25-4.99 cmol kg-1) and low to high base saturation
percentages (4-97 %). In clay fraction, all soils have mixed mineralogy. Micromorphologically, the features
indicative of redoximorphic feature are intrusive and impregnative in Pedons 2-6. The soils fertility
capability units include Ldakme, SLdakme, Lgakme, Lgkme. Pedons 1-2 are not suitable (N) for paddy
rice but marginally to moderately suitable (S3-sn to S2-sn) for growing upland crops and para rubber.
Pedons 3-6 that have aquic condition which are marginally to moderately suitable (S3-sn to S2-sn)
for paddy rice.

Article Details

How to Cite
คำลอย ม., ถาวรพฤกษ์ เ., จิตมาตย์ ณ., & เขียวรื่นรมณ์ เ. (2019). A Study of Soils with Redoximorphic Features in Lowland-Upland Transition Zone of Khorat Basin. King Mongkut’s Agricultural Journal, 37(2), 303–312. retrieved from https://li01.tci-thaijo.org/index.php/agritechjournal/article/view/197750
Section
Research Articles

References

กองวางแผนการใช้ที่ดิน. 2542. คู่มือการประเมินคุณภาพที่ดินสำหรับพืชเศรษฐกิจ. พิมพ์ครั้งที่ 3. กรมพัฒนาที่ดิน กระทรวงเกษตร
และสหกรณ์, กรุงเทพฯ.
กองสำรวจดนิ . 2523. คู่มือจำแนกความเหมาะสมของที่ดินสำหรับพืชเศรษฐกิจ. กรมพัฒนาที่ดิน กระทรวงเกษตรและสหกรณ,์ กรงุ เทพฯ. 76 น.
กองสำรวจดิน. 2531. แผนที่จังหวัดร้อยเอ็ด มาตราส่วน 1:100,000. กรมพัฒนาที่ดิน กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.
คณาจารย์ภาควิชาปฐพีวิทยา. 2548. ปฐพีวิทยาเบื้องต้น. สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ. 547 น.
เอิบ เขียวรื่นรมณ์. 2548. การสำรวจดิน. พิมพ์ครั้งที่ 2. สำนักพิมพ์มหาวิทยาลัย เกษตรศาสตร์, กรุงเทพฯ. 733 น.
อัญชลี สุทธิประการ, เอิบ เขียวรื่นรมณ์, เสาวนุช ถาวรพฤกษ์ และ ศุภิฌา ธนะจิตต์. 2555. คู่มือปฏิบัติการธรณีวิทยาเบื้องต้น.
พิมพ์ครั้งที่ 2. ภาควิชาปฐพีวิทยา คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
Blake, G.R. and K.H. Hartge. 1986. Bulk density, pp. 363-382. In A. Klute, ed. Methods of Soil Analysis. Part 1. Amer.
Soc.of Agron. Inc., Madison, Wisconsin, USA.
Bloom, P.R. and D.F. Grigal. 1985. Modeling soil response to acidic deposition in non-sulfate adsorbing soils. J. Environ.
Qual. 14: 481-495.
Bloom, P.R. 2000. Soil pH and pH Buffering, pp. B333-B352. In M.E. Sumner, ed. Handbook of Soil Science. CRC Press LLC.
Bray, R.H. and L.T. Kurtz. 1945. Determination of total organic and available forms of phosphorus in Soil. Soil Science
Society of America Journal 59: 39-45.
Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops, T. Turisna, U. Bablel, J. Agrilar, H.J. Altemullar, E.A. Fitzpatrick,
S.T. Kowalinski, G.K. Rutherford and E.A. Yarilova. 1985. Handbook for Thin Section Description. Waine Research,
Albrighton, United Kingdom.
Buol, S.W., R.J. Southard., R.C. Graham. and P.A. McDaniel. 2011. Soil Genesis and Classification, 6th ed., Iowa State
Press, A Blackwell Publishing Company, Iowa.
Chapman, H.D. 1965. Cation exchange capacity, pp. 891-901. In C.A. Black, ed. Methods of Soil Analysis. Part II.
Monograph No.9. American Society of Agronomy Inc., Amdison, Wisconsin.
Day, P.R. 1965. Particle fractionation and particle size analysis, pp. 545-567. In C.A. Black, ed. Methods of Soil Analysis
Part l. Agronomy, No. 9. Soc. of Agron. Inc., Madisoin, Wisconsin, USA.
Faithfull, N.T. 2002. Methods in Agricultural Chemical Analysis. CAB International, Wallingford, UK.
Jackson, M.L. 1965. Soil Chemical Analysis-Advanced Course. Department of Soils, University of Wisconsin.
Kilmer, V.J. and L.T. Alexander. 1949. Method of making mechanical analysis of soils. Soil Science Society of America
Journal 68: 15-24.
Klute, A. 1965. Laboratory Measurement of Hydraulic Conductivity of Saturated Soils, pp. 210-220. In C.A. Black, ed.
Methods of Soil Analysis. Part l. Agronomy, No. 9. Amer. Soc. Agron. Inc., Madison, Wisconsin, USA.
National Soil Survey Center. 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No.42,
Version 3.0. Natural Conservation Service, United States Department of Agriculture.
Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter, pp. 961-1010. In D.L. Sparks,
A.L. Page, P.A. Helmke, R.H. Poeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston and M.E. Sumner, eds.
Methods of Soil Analysis, Part 3. Chemical Methods. Agronomy No. 5. SSSA Book Series. Madison, WI.
Peech, M., L.T. Alexander, L.A. Dean and J.F. Reed. 1974. Methods of Soil Analysis for Fertility Investigation. U.S. Dept.
Agric. Cric, Madison, Wisconsin, USA.
Pratt, P.E. 1965. Potassium, pp. 1022-1030. In C.A. Black, ed. Methods of Soil Analysis. Part II. Monograph No.9.
American Society of Agronomy Inc., Madison, Wisconsin, USA.
Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkaline Soil. US Salinity Laboratory, US Dept. Agr. Hbk. 60.
Sanchez, P.A. 1976. Properties and Management of Soils in the Tropics. Wiley, New York.
Sanchez, P.A., C.A. Palm and S.W. Buol. 2003. Fertility Capability Classification: a tool to assess soil quality in the tropics.
Geoderma. 114: 157-185.
Thomas, G.W. 1982. Exchange cations, pp. 159-165. In A.L. Page ed. Methods of Soil Analysis. Part II. 2nd ed., Amer.
Soc. of Agron., Inc., Madison, USA.
Ulrich, B. 1991. An ecosystem approach to soil acidification, pp. 28-79. In B. Ulrichand, M.E. Sumner, eds. Soil Acidity.
Springer-Verlag, Berlin, Germany.
Vepraskas, M.J. 2004. Redoximorphic Feature for Identifying Aquic Condition. Tech. Bull. 301. NC Agric. Res. Serv.
Raleigh, NC.
Weil, R.R. and N.C. Brady. 2016. The Nature and Properties of soils. 15th ed. Pearson Education. Inc., New Jersey.
Whittig, L.D. 1965. X-ray diffraction technique for minerals identification and mineralogical composition, pp. 671-698.
In C.A. Black, ed. Methods of Soil Analysis. Part II. Monograph No. 9. American Society of Agronomy Inc., Madison,
Wiscocsin.