Optimum Carbon Dioxide Concentrations for Enhancing Biomass and Carbon Dioxide Biofixation of Scenedesmus dimorphus KMITL
Main Article Content
Abstract
The aim of this study was to investigate the optimum CO2 concentrations for growth, chemical composition and carbon dioxide biofixation of the green microalga Scenedesmus dimorphus KMITL. A range of carbon dioxide concentrations, 0.03, 2.50, 5.00 and 7.50%, were supplied to the alga samples, which were cultivated in axenic Chlorella medium in the laboratory for 18 days. Cultivating the alga with 5% CO2 produced alga with the highest biomass, chlorophyll-a, protein and carbon contents, which were 1.15±0.03 g/l, 2.48±0.05 mg/l, 305.73±28.65 mg/g and 33.83±0.56%, respectively. The maximum carotenoid (2.33±0.35 µg/l) and carbohydrate (206.31±18.82 mg/g) levels were observed in alga cultivated with 0.03 and 7.50% CO2 concentrations, respectively. Cultivation of this alga supplied with 5% CO2 gave the highest CO2 fixations (1.24±0.03 g/g, 1.43±0.03 g/l) and CO2 fixation rate (50.95±3.98 kg/m3/year). The most abundant fatty acid component found in this alga was C16:0 (19.85-57.91%), followed by C18:0 (11.33-20.53%) and C18:3n3 (9.45-22.44%). The results of this study indicated that 5% CO2 was optimal for enhancing the biomass of the algal strain. Moreover, this alga showed a high capability for CO2 fixation. Thus, S. dimorphus KMITL can be used as an alternative strain for industrial flue gas fixation.
Article Details
King Mongkut's Agricultural Journal
References
สุนีรัตน์ เรืองสมบูรณ์ และจันทรา ดีมาก. 2561. ผลของอัตราส่วนไนโตรเจนต่อเหล็ก ต่อการเจริญและการผลิตไขมันของสาหร่ายสีเขียว Scenedesmus dimorphus. วารสารเกษตรพระจอมเกล้า 36: 77-86.
Aburail, N., Sumida, D., and Abe, K. 2015. Effect of light level and salinity on the composition and accumulation of free and ester-type carotenoids in the aerial microalga Scenedesmus sp. (Chlorophyceae). Algal Research 8: 30-36.
Becker, E. W. 1994. Microalgae Biotechnology and Microbiology. Great Britain: Cambridge University Press.
Bligh, E. G., and Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911-917.
Borowitzka, M. A. 2010. Carotenoid production using microorganisms, pp. 225-240. In Single cell oils. Microbial and Algal Oils,
Z. Cohen, and C. Ratledge, eds. Urbana: AOCS Press.
Borowitzka, M. A. 2013. High-value products from microalgae-their development and commercialization. Journal of Applied Phycology 25: 743-756.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.
Dufosse, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Chidambara Murthy, K. N., and Pavishankar, G. A. 2005. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or and industrial reality?. Trends in Food Science and Technology 16: 389-406.
Farias Silva, C. E., and Bertucco, A. 2016. Bioethanol from microalgae and cyanobacteria: A review and technological outlook.
Process Biochemistry 51: 1833-1842.
Ge, Y., Liu, J., and Tian, G. 2011. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresource Technology 102: 130-134.
Ho, S. H., Chen, C. Y., and Chang, J. S. 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology 113: 244-252.
Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., and Franco, T. T. 2009. Effect of light cycles (night/day) on CO2 fixation and biomass production by micro-algae in photobioreactors. Chemical Engineering and Processing 48: 306-310.
Kishimoto, M., Okakura, T., Nagashima, H., Minowa, T., Yokoyama, S., and Yamabe, K. 1994. CO2 fixation and oil production using micro-algae. Journal of Fermentation and Bioengineering 78: 479-482.
Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement which the folin phenol reagent. Journal of Biological Chemistry 193: 265-275.
Morais, M. G., and Costa, J. A. V. 2007. Carbon dioxide fiation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters 29: 1349-1352.
Murakami, M., and Ikenouchi, M. 1997. The biological CO2 fixation and utilization project by RITE-Screening and breeding of microalgae with high capability in fixing CO2. Energy Conversion Management 38: S493-S497.
National Oceanic and Atmospheric Administration. 2018. Trends in atmospheric carbon dioxide. Source: https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global (15 May 2019).
Ostgaard, K., Indergaard, M., Markussen, S., Knutsen, S. H., and Jensen, A. 1993. Carbohydrate degradation and methane production during fermentation of Laminaria saccharina (Laminariales, Phaeophyceae). Journal of Applied Phycology 5: 333-342.
Pooja, K., and Himabindu, V. 2012. CO2 removal from industrial flue gas using Botrycoccus branii for simultaneous lipid production. International Journal of Science and Research 3: 366-373.
Qin, S., Liu, G. X., and Hu, Z. Y. 2008. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochemistry 43: 795-802.
Ruangsomboon, S., Ganmanee, M., and Choochote, S. 2013. Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL.
Journal of Applied Phycology 25: 867-874.
Ruangsomboon, S., Choochote, S., Thaweekijakarn, P., and Aue-umneoy, D. 2012. Nitrogen and Phosphorus removal from wastewater by green microalga, Scenedesmus dimorphus. In Proceeding of the 2nd Asia-Oceania algae innovation summit: algae for sustainable development. 3-5 September 2012. Bangkok. Thailand.
Sydney, E. B., Sturm, W., Carvalho, J. C., Thomax-Soccol, V., Larroche, C., Pandey, A., and Soccol, C. R. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresource technology 101: 5892-5896.
Tang, D., Han, W., Li, P., Miao, X., and Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology 102: 3071–3076.
Toledo-Cervantes, A., Morales, M., Novelo, E., and Revah, S. 2013. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresource Technology 130: 652-658.
Vonshak, A., and Maske, H. 1982. Algae: growth techniques and biomass production. In Techniques in Bioproductivity and Photosynthesis, J. Coombs, and D.O. Hall, eds. pp. 66-77. Oxford: Pergamon Press.
Xin, L., Hong-Ying, H., and Jia, Y. 2010a. Lipid accumulation and nutrients removal properties in secondary effluent of a newly-isolated freshwater microalga Scenedesmus sp. LX1. New Biotechnology 27: 59-63.
Xin, L., Hong-ying, H., Ke, G., and Ying-Xue, S. 2010b. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology 101: 5494-5500.
Yoshimura, T., Okada, S., and Honda, M. 2013. Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: optimal CO2, salinity, temperature, and irradiance conditions. Bioresource Technology 133: 232-239.