การประยุกต์ใช้ Antimicrobial peptides ในการควบคุมโรคพืช
Main Article Content
บทคัดย่อ
เชื้อจุลินทรีย์ก่อโรคพืชเป็นปัญหาสำคัญและเร่งด่วนโดยเฉพาะในประเทศเกษตรกรรม การควบคุมโรคด้วยวิธีทางเคมีและยาปฏิชีวนะอาจทำให้เกิดผลเสียตามมาในวงกว้างโดยเฉพาะการดื้อยาและสารตกค้างในพืชผักสดและวัตถุดิบทางการเกษตร ส่งผลถึงความไม่มั่นคงทางอาหารในระดับชาติ AMPs หรือ Antimicrobial peptides เป็นทางเลือกที่มีประสิทธิภาพทางเลือกหนึ่งในการแก้ปัญหาดังกล่าว เนื่องจากมีคุณสมบัติโดดเด่นในการยับยั้งการเจริญหรือกำจัดเชื้อจุลินทรีย์หลายชนิดโดยเฉพาะแบคทีเรียและราที่เป็นสาเหตุหลักในการก่อโรค AMPs พบได้ในสิ่งมีชีวิตทั่วไปทั้งโปรคาริโอตและยูคาริโอต นับเป็นเกราะป้องกันทางธรรมชาติของสิ่งมีชีวิต AMPs แต่ละชนิดมีความสามารถในการยับยั้งหรือกำจัดจุลินทรีย์ได้ต่างชนิดกัน ด้วยกลไกที่แตกต่างกัน AMPs หลายชนิดสามารถกำจัดจุลินทรีย์ได้ภายในระยะเวลาเพียงไม่กี่วินาทีหลังจากเริ่มสัมผัสเชื้อ บางชนิดมีฤทธิ์กระตุ้นการทำงานของยาปฏิชีวนะ และมีหลายชนิดมีประสิทธิภาพมากกว่ายาปฏิชีวนะ โดยการทำงานของ AMPs มี 2 กลไกหลัก คือการเข้าทำลายบริเวณเยื่อหุ้มเซลล์ และการแทรกเข้าเยื่อหุ้มเซลล์โดยไม่ทำให้เยื่อหุ้มเซลล์เสียหาย แต่เข้าไปยับยั้งกระบวนการสังเคราะห์สารสำคัญในการดำรงชีวิตของเซลล์จุลินทรีย์ เช่น ดีเอ็นเอ อาร์เอ็นเอ โปรตีน ทั้งนี้ผลการศึกษา AMPs ในปัจจุบันส่วนใหญ่ให้ผลดีในระดับห้องปฏิบัติการ ดังนั้นแนวทางการนำไปใช้ขั้นต่อไป คือการนำไปศึกษาต่อในสภาพแวดล้อมจริงนอกห้องปฏิบัติการและสภาพแวดล้อมที่มีการระบาดตามลำดับ
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
วารสารเกษตรพระจอมเกล้า
References
Aerts, A. M., Francois, I. E. J. A., Cammue, B. P. A., & Thevissen, K. (2008). The mode of antifungal action of plant, insect and human defensins. Cellular and Molecular Life Sciences, 65, 2069-2079.
Alan, A. R., & Earle, E. D. (2002). Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B, Molecular Plant-Microbe Interactions, 15, 701–708.
Andersen, J. H., Jenssen, H., Sandvik, K., & Gutteberg, T. J. (2004). Anti-hsv activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. Journal of Medical Virology, 74, 262–271.
Bahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals, 6, 1543-1575.
Balandin, M., Royo, J., Gomez, E., Muniz, L. M., Molina, A., & Hueros, G. (2005). A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterization of ZmESR-6, a defensin gene specifically expressed in this region. Plant Molecular Biology, 58, 269-282.
Bechinger, B. (2005). Detergent-like properties of magainin antibiotic peptides: A 31p solid-state nmr spectroscopy study. Biochimica et Biophysica Acta, 1712, 101–108.
Belaid, A., Aouni, M., Khelifa, R., Trabelsi, A., Jemmali, M., & Hani, K. (2002). In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. Journal of Medical Virology, 66, 229–234.
Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria. Nature Reviews Microbiology, 3, 238–250.
Castle, M., Nazarian, A., Yi, S. S., & Tempst, P. (1999). Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. Journal of Biological Chemistry, 274, 32555–32564.
Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E. W., Vasil, M. L., & Hodges, R. S. (2005). Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. Journal of Biological Chemistry, 280, 12316-12329.
Costa, F., Carvalho, I. F., Montelaro, R. C., Gomes, P., & Martins, M. C. (2011). Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia, 7, 1431–1440.
Couto, M. A., Harwig, S. S., & Lehrer, R. I. (1993). Selective inhibition of microbial serine protease by anap-2, an antimicrobial peptide from equine neutrophils. Infection and Immunity, 61, 2991-2994.
De Coninck, B., Cammue, B. P. A., & Thevissen, K. (2013). Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biology Reviews, 26, 109-120.
Ditsawanon, T., Roytrakul, S., Phaonakrob, N., Charoenlappanit, S., Thaisakun, S., & Parinthawong, N. (2022). Antibacterial efficiency and mechanisms of small synthetic peptides derived from agricultural wastes that act against plant pathogens but not plant growth-promoting rhizobacteria. Agronomy, 12,1841.
Dösler, S. (2017). Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents. Istanbul Journal of Pharmacy, 47(2), 72–76.
Fernandez-Vidal, M., Jayasinghe, S., Ladokhin, A. S., & White, S. H. (2007). Folding amphipathic helices into membranes: Amphiphilicity trumps hydrophobicity. Journal of Molecular Biology, 370, 459–470.
Francisco, G. C., & Georgina, E. (2017). Structural motifs in class I and class II plant defensins for phospholipid interactions: Intriguing role of ligand binding and modes of action. Journal of Plant Physiology, 5, 1.
Franco, O. L. Murad, A. M. Leite, J. R., Mendes, P. A. M. Prates, M. V., & Bloch, C. (2006). Identification of a cowpea gamma-thionin with bactericidal activity. The FEBS Journal, 273, 3489-3497.
Goyal, R. K., & Mattoo, A. K. (2014). Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Science, 228, 135–149.
Hammami, R., Ben H. J., Vergoten, G., & Flis, I. (2009). PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Research, 37, D963–D968.
Hancock, R. E., & Scott, M. G. (2000). The role of antimicrobial peptides in animal defenses. Proceedings of the National Academy of Sciences, 97, 8856–8861.
Heydari, H., Golmohammadi, R., Mirnejad, R., Tebyanian, H., Fasihi-Ramandi, M., & Moghaddam, M. M. (2021). Antiviral peptides against Coronaviridae family: A review. Peptides, 139, 170526.
Hsu, C. H., Chen, C., Jou, M. L., Lee, A. Y., Lin, Y. C., Yu, Y. P., Huang, W. T., & Wu, S. H. (2005). Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Research, 33, 4053–4064.
Huang, Y. B., Huang, J. F., & Chen, Y. X. (2010). Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein & Cell, 1, 143–152.
Jenssen, H., Hamill, P., & Hancock, R. E. W. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19, 491–511.
Jiang, Z., Vasil, A. I., Hale, J. D., Hancock, R. E., Vasil, M. L., & Hodges, R. S. (2008). Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers, 90, 369–383.
Lee, D. G., Kim, H. N., Park, Y. K., Kim, H. K., Choi, B. H., Choi, C. H., & Hahm, K. S. (2002). Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, hp (2–20), derived from n-terminus of Helicobacter pylori ribosomal protein L1. Biochimica et Biophysica Acta, 1598, 185–194.
Leippe, M. (1999). Antimicrobial and cytolytic polypeptides of amoeboid protozoa—Effector molecules of primitive phagocytes. Developmental & Comparative Immunology, 23, 267–279.
Li, J., Hu†, S., Jian, W., Xie, C., & Yang, X. (2021) Plant antimicrobial peptides: structures, functions, and applications. Botanical Studies, 62, 5.
LI, Z. T., & Gray D. J. (2003). Effect of five antimicrobial peptides on the growth of Agrobacterium tumefaciens, Escherichia coli and Xylella fastidiosa. Vitis, 42 (2), 95–97.
Loeffler, J. M., Nelson, D., & Fischetti, V. A. (2001). Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science, 294, 2170–2172.
Madani, F., Lindberg, S., Langel, U., Futaki, S., & Graslund, A. (2011). Mechanisms of cellular uptake of cell-penetrating peptides. Journal of Biophysics. http://doi.org/10.1155/2011/414729
Madadlou, A. (2020). Food proteins are a potential resource for mining cathepsin L inhibitory drugs to combat SARS-CoV-2. European Journal of Pharmacology. http://doi.org/10.1016/j.ejphar.2020.173499
Martin -Serrano, A., Gómez, R., Ortega, P., & de la Mata, J. (2019). Nanosystems as Vehicles for the Delivery of Antimicrobial Peptides (AMPs). Pharmaceutics, 11, 448.
Mecke, A., Lee, D. K., Ramamoorthy, A., Orr, B. G., & Holl, M. M. B. (2005). Membrane thinning due to antimicrobial peptide binding: An atomic force microscopy study of msi-78 in lipid bilayers. Biophysical Journal, 89, 4043–4050.
Naghmouchi, K., le Lay, C., Baah, J., & Drider, D. (2012). Antibiotic and antimicrobial peptide combinations: Synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Research in Microbiology, 163, 101–108.
Nicolas, P. (2009). Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. The FEBS Journal, 276, 6483–6496.
Otvos, L. (2005). Antibacterial peptides and proteins with multiple cellular targets. Journal of Peptide Science, 11, 697–706.
Papo, N., Oren, Z., Pag, U., Sahl, H. G., & Shai, Y. (2002). The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. Journal of Biological Chemistry, 277, 33913–33921.
Park, Y., Jang, S. H., Lee, D. G., & Hahm, K. S. (2004). Antinematodal effect of antimicrobial peptide, pmap-23, isolated from porcine myeloid against Caenorhabditis elegans. Journal of Peptide Science, 10, 304–311
Peters, B. M., Shirtliff, M. E., & Jabra-Rizk, M. A. (2010). Antimicrobial peptides: Primeval molecules or future drugs. PLoS Pathogens. 6, e1001067.
Pushpanathan, M., Rajendhran, J., Jayashree, S., Sundarakrishnan, B., Jayachandran, S., & Gunasekaran, P. (2012). Identification of a novel antifungal peptide with chitin-binding property from marine metagenome. Protein & Peptide Letters, 19, 1289–1296.
Radek, K., & Gallo, R. (2007). Antimicrobial peptides: Natural effectors of the innate immune system. Semin. Immunopathology, 29, 27–43.
Rodrigues, B., Morais, T. P., Zaini, P. A., Campos, C. S., Almeida‑Souza, H. O., Dandekar, A. M., Nascimento, R., & Goulart, L. R. (2020). Antimicrobial activity of Epsilon‑Poly‑l‑lysine against phytopathogenic bacteria. Scientific Reports, 10, 11324.
Rozek, A., Friedrich, C. L., & Hancock, R. E. (2000). Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 39, 15765–15774.
Sathoff, A. E., Velivelli, S., Shah, D. M., & Samac, D. A. (2019). Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology, 109, 402-408.
Sereenonchai S., & Arunrat, N. (2022). Urban Agriculture in Thailand: Adoption Factors and Communication Guidelines to Promote Long-Term Practice. International Journal of Environmental Research and Public Health, 20(1), 1.
Shai, Y. (2002). Mode of action of membrane active antimicrobial peptides. Biopolymers, 66, 236–248.
Shah, P., Hsiao, F. S. H., Ho, Y. H., & Chen, C. S. (2016). The proteome targets of intracellular targeting antimicrobial peptides. Proteomics, 16, 1225–1237.
Shi, W., Li, C., Li, M., Zong, X., Han, D., & Chen, Y. (2016). “Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice.” Applied Microbiology and Biotechnology, 100, 5059 – 5067.
Sinha, S., Cheshenko, N., Lehrer, R. I., & Herold, B. C. (2003). Np-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrobial Agents and Chemotherapy, 47, 494–500.
Subbalakshmi, C., & Sitaram, N. (1998). Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters, 160, 91–96.
Tantong, S., Pringsulaka, O., Weerawanich, K., Meeprasert, A., Rungrotmongkol, T., Sarnthima, R., Roytrakul, S., & Sirikantaramas, S. (2016). Two novel antimicrobial defensins from rice identified by genecoexpression network analyses. Peptides, 84, 7–16.
Uteng, M., Hauge, H. H., Markwick, P. R., Fimland, G., Mantzilas, D., Nissen-Meyer, J., & Muhle-Goll, C. (2003). Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin p and a sakacin p variant that is structurally stabilized by an inserted c-terminal disulfide bridge. Biochemistry, 42, 11417–11426.
Wang, Z., Bing, X., Liu, S., & Chen, X. (2016). RNA interference of an antimicrobial peptide, Btdef, reduces Tomato yellow leaf curl China virus accumulation in the whitefly Bemisia tabaci . Pest Management Science, 73(7), 1421–1427.
Wade, J. D., Lin, F., Hossain, M. A., & Dawson, R. M. (2012). Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor. Amino Acids, 43, 2279–2283.
Wu, M., Maier, E., Benz, R., & Hancock, R. E. (1999). Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry, 38, 7235–7242.
Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A. J., Herold, B. C., Wagar, E. A., & Lehrer, R. I. (2004). defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. Journal of Virology, 78, 5147–5156.
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.
Zasloff, M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences, 84, 5449–5453.
Zhang, Y. M., & Rock, C. O. (2009). Transcriptional regulation in bacterial membrane lipid synthesis. Journal of Lipid Research. 50, S115–S119.
Zhao, H., To, K. K. W., Sze, K. H., Yung, T. T., Bian, Lam, M. H., Yeung, Li, M. L. C. Chu, H., & Yuen, K. Y. (2020). A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2, Nature Communications, 11, 4252.
Zhao, X., Wu, H., Lu, H., Li, G., & Huang, Q. (2013). Lamp: A database linking antimicrobial peptides. PLoS One, 8 (6), e66557.