ความสัมพันธ์ระหว่างรูปแบบยีน <I>cGH</I> และ <I>IGF-1</I> กับน้ำหนักตัวและการเจริญเติบโตของไก่ไข่มุกอีสาน 2

Main Article Content

อนุวัฒน์ จันดามุก
บัญญัติ เหล่าไพบูลย์
สจี กัณหาเรียง

บทคัดย่อ

ฮอร์โมนการเจริญเติบโตในไก่ (chicken growth hormane, cGH) และฮอร์โมน insulin-like growth factor (IGF-I) มีบทบาทสำคัญในการควบคุมการเจริญเติบโตของเซลล์ร่างกายที่ส่งผลต่อประสิทธิภาพการให้ผลผลิตในไก่ การศึกษานี้จึงมีวัตถุประสงค์ตรวจหารูปแบบของยีน cGH และ IGF-1 และความสัมพันธ์ของรูปแบบยีนต่อน้ำหนักตัวและลักษณะการเจริญเติบโตในไก่ไข่มุกอีสาน 2 ชั่วรุ่นที่ 5 จำนวน 318 ตัวอย่าง หาความหลากหลายทางพันธุกรรมของยีน cGH และ IGF-1 โดยใช้เทคนิค PCR-RFLP วิเคราะห์ความสัมพันธ์โดยใช้ Proc GLM ผลการศึกษาพบประชากรที่ศึกษามีความถี่จีโนไทป์ของยีน cGH/EcoRV ตำแหน่ง SNP ใน Chr.27 (G>A +1705 Intron3) คือ 0.101 สำหรับ  AA, 0.550 สำหรับ AG และ 0.349 สำหรับ GG ขณะที่ความถี่จีโนไทป์ของยีน IGF-1/Hinfl ตำแหน่ง SNP ใน Chr.1 (A>C 5’UTR) คือ 0.160 สำหรับ AA, 0.591 สำหรับ AC และ 0.248 สำหรับ CC การวิเคราะห์ความสัมพันธ์พบว่าความสัมพันธ์รูปแบบจีโนไทป์ของยีน IGF-1/Hinfl กับน้ำหนักตัวในไก่ไข่มุกอีสาน 2 กลุ่มไก่ที่มีจีโนไทป์ AC มีน้ำหนักแรกเกิดเฉลี่ยสูงสุด (41.39 ± 0.44 กรัม) เมื่อเทียบในกลุ่มจีโนไทป์ AA (39.70 ± 0.51 กรัม) และ CC (40.49 ± 0.29 กรัม) (P<0.05) นอกจากนี้จีโนไทป์ AC มีแนวโน้มที่จะมีน้ำหนักตัวสูงสุดที่ 10 สัปดาห์ (P<0.1) แต่ไม่พบความสัมพันธ์ระหว่างจีโนไทป์ของยีน IGF-1/Hinfl กับอัตราการเจริญเติบโตเฉลี่ยต่อวันที่ 4 สัปดาห์, ความกว้างอก และรอบอก ในขณะที่ไม่พบความสัมพันธ์ระหว่างจีโนไทป์ของยีน cGH/EcoRV กับน้ำหนักตัว, อัตราการเจริญเติบโตเฉลี่ยต่อวัน, ความกว้างอก และรอบอก (P>0.05) ของไก่ไข่มุกอีสาน 2 การค้นพบเหล่านี้ชี้ให้เห็นว่ารูปแบบจีโนไทป์ของยีน IGF-1/Hinfl น่าจะมีศักยภาพในการพัฒนาเป็นเครื่องหมายทางพันธุกรรมสำหรับการปรับปรุงน้ำหนักตัวของไก่ไข่มุกอีสาน 2 ต่อไป

Article Details

บท
บทความวิจัย

References

Amills, M., N. Jimenez, D. Villalba, M. Tor, E. Molina, D. Cubilo, C. Marcos, A. Francesch, A. Sanchez and J. Estany. 2003. Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their association with growth and feeding traits. Journal of Poultry Science 82(10): 1485-1493.

Baranwal, V. K., V. Mikkilineni, U. B. Zehr, A. K. Tyagi and S. Kapoor. 2012. Heterosis: emerging ideas about hybrid vigour. Journal of Experimental Botany 63(18): 6309-6314.

Bekele, F., T. Adnoy, H. M. Gjoen, J. Kathle and G. Abebe. 2010. Production performance of dual purpose crosses of two indigenous with two exotic chicken breeds in sub-tropical environment. International Journal of Poultry Science 9(7): 702-710.

Buasook, T., M. Duangjinda, Y. Phasuk and S. Kunhareang. 2014. Patterns of cGH, IGF-1, ApoB2, ApoVLDL-II and FASN; and body weight and cholesterol level in plasma of Thai native chicken crossbreds. Khon Kaen Agriculture Journal 42(3): 357-368. (in Thai)

Charoensook, R., T. Incharoen, N. Wichasit and N. Preecha. 2016. Influence of breed and sex on the growth traits of White Leghorn and Rhode Island Red chickens under topical condition. Khon Kaen Agriculture Journal 44(Suppl.1): 401-404. (in Thai)

Dekkers, J.C.M. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science 82: E313-328.

Jaturasitha, S., T. Srikanchai, M. Kreuzer and M. Wicke. 2008. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poultry Science 87(1): 160-169.

Kansaku, N., G. Hiyama, T. Sasanami and D. Zadworny. 2008. Prolactin and growth hormone in birds: Protein structure, gene structure and genetic variation. Journal of Poultry Science. 45:(1), doi:10.2141/jpsa.45.1.

Laopaiboon, B. 2018. Chicken without gout. (Online). Available https://www.77kaoded.com/ content/70412 (December 16, 2018). (in Thai)

Leotaragul, A., P. Sondhipiroj and S. Morathop. 1996. Breeding and selection of native chickens of Mahasarakham Livestock Breeding Station II. Productive performance of native chickens raised in livestock breeding station. Journal of Agriculture 12(1): 55-64. (in Thai)

Li, C.Y. and H. Li. 2006. Association of MC4R gene polymorphisms with growth and body composition traits in chicken. Asian-Australasian Journal of Animal Sciences 19(6): 763-768.

Lopez, K.P., M.W. Schilling, and A. Corzo. 2011. Broiler genetic strain and sex effects on meat characteristics. Journal of Poultry Science 90: 1105-1111.

Na Rungsri, D., K. Akkahart and A. Leotaragul. 2007. Formation of foundation stock of Thai indigenous chicken (Pradu Hangdum); 6. Heritability and genetic correlation between body weight and body conformation of Pradu Hangdum. Animal Husbandry Division, Department of Livestock Development, Bangkok. 12 p. (in Thai)

Nguyen, A.T.L., S. Kunhareang and M. Duangjinda. 2015. Association of chicken growth hormones and insulin-like growth factor gene polymorphisms with growth performance and carcass traits in Thai broilers. Asian-Australasian Journal of Animal Sciences 28(12): 1686-1695.

Nie, Q., B. Sun, D. Zhang, C. Luo, N.A. Ishag, M. Lei, G. Yang and X. Zhang. 2005. High diversity of the chicken growth hormone gene and effects on growth and carcass traits. Journal of Heredity 96(6): 698-703.

Pandey, N.K., R.P. Singh, V.K. Saxena, N. Shit, R. Singh, R.K. Sharma and K.V.H. Sastry. 2013. Effect of IGF1 gene polymorphism and expression levels on growth factors in Indian colored broilers. Livestock Science 155(2): 157-164.

Patbandha, T.K., D.D. Garg, S. Marandi, D.G. Vaghamashi, S.S. Patil and H.H. Savsani. 2017. Effect of chick weight and morphometric traits on growth performance of coloured broiler chicken. Journal of Entomology and Zoology Studies 5(6): 1278-1281.

Peawong, W., P. Ratanapradit and S. Jaturasitha. 2010. Genetic polymorphism of MC5R gene on growth rate of indigenous chicken (Praduhangdum). Journal of Agriculture 26(2): 163-172. (in Thai)

Preecha, N., R. Charoensok, T. Incharoen, S. Numthuam, N. Wichasit and T. Pechrkong. 2017. Polymorphisms of cGH, MC5R, IGFBP2 and IGF-1 genes and their association with growth traits in White Leghorn and Rhode Island Red. Khon Kaen Agriculture Journal 45(Suppl. 1): 783-789. (in Thai)

Promwatee, N., M. Duangjinda, W. Boonkum and B. Loapaiboon. 2011. Association of single nucleotide polymorphisms in GHSR, IGFI, cGH and IGFBP2 genes on growth traits in Thai Native Chickens (Chee and Pradu Hang Dam). Khon Kaen Agriculture Journal 39(3): 261-270. (in Thai)

Promwatee, N., B. Laopaiboon, T. Vongpralub, Y. Phasuk, S. Kunhareang, W. Boonkum and M. Duangjinda. 2013. Insulin-like growth factor I gene polymorphism associated with growth and carcass traits in Thai synthetic chickens. Genetics and Molecular Research 12(4): 4332-4341.

Salmon, W.D. and W.H. Daughaday. 1957. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. The Journal of Laboratory and Clinical Medicine 49(6): 825-836.

SAS. 1998. User’s Guide: V.6.12. SAS Institute Inc., Cary, NC.

Tarachai, P. 2017. Poultry produc tion: Broiler raising. (Online). Available http://www.as.mju.ac.th/ E-Book/t.pdf (December 16, 2018). (in Thai)

Yan, B., X. Deng, J. Fai, X. Hu, C. Wu and N. Li. 2003. Single nucleotide polymorphism analysis in chicken growth hormone gene and its associations with growth and carcass traits. Chinese Science Bulletin 48(15): 1561-1564.

Wangtaweesukkamol, N., W. Loongyai, B. Chomtee and P. Sopannarath. Genetic parameters for body weights in Betong chicken (KU Line). Agricultural Science Journal 44(Suppl. 1): 167-170. (in Thai)

Zhou, H., A.D. Mitchell, J.P. McMurtry, C.M. Ashwell and S.J. Lamont. 2005. Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Journal of Poultry Science 84(2): 212-219.