Spatial variability of extractable potassium in sandy-paddy soils in Northeast of Thailand: study of optimal distance between the sampling points

Main Article Content

Natthawipa Onramai
Porntip Phontusang
Anongnat Sriprachote

Abstract

Information on spatial variability of potassium (K) extracted in soil is an important for rice cultivated on sandy soil. To be able to manage the soil correctly, appropriately and precisely, so the distance of sampling points is an important factor. The objective of this study was to describe spatial variability of the concentration of K in sandy soil and to assess the appropriate distance for soil collection using geostatistics. The study was conducted in Phra Yuen District, Khon Kaen Province. There were 5 study areas, included the rice planting area for less than 5 years (N1 and N2) and the planting area for more than 30 years (L1, L2 and L3). Each site, 100 of soil samples were collected according to the stratified systematic unaligned sampling method in 5x5 m grid size in the area of 2,500 m2 (50x50 m). The results showed that the variation of K concentrations in both areas were moderate to high, with an average value of 167 ± 57, 201 ± 71, 134 ± 27, 107 ± 38 and 103 ± 40 mg/kg for N1, N2, L1, L2 and L3, respectively. The semivariogram shows that the spatial dependence of K concentrations were high in N1, L1, L2 and L3, while N2 had a moderately level. The results indicated that the optimal distance for soil sampling were 8 - 90 m and 3 - 44 m for the rice planting area for less than 5 years and the planting area over than 30 years, respectively.

Article Details

How to Cite
Onramai, N. ., Phontusang, P. ., & Sriprachote, A. . (2020). Spatial variability of extractable potassium in sandy-paddy soils in Northeast of Thailand: study of optimal distance between the sampling points. Khon Kaen Agriculture Journal, 48(6), 1266–1275. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/252071
Section
บทความวิจัย (research article)

References

กรมพัฒนาที่ดิน. 2548. ความรู้พื้นฐานด้านทรัพยากรดิน. กระทรวงเกษตรและสหกรณ์.

กรมวิชาการเกษตร. 2545. เกษตรดีที่เหมาะสมสำหรับข้าวนาชลประทาน. กระทรวงเกษตรและสหกรณ์.

คณาจารย์ภาควิชาปฐพีวิทยา. 2541. ปฐพีวิทยาเบื้องต้น. ภาควิชาปฐพีวิทยา คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ

พรทิพย์ โพนตุแสง, เริงศักดิ์ กตเวทิน, เกริก ปั้นเหน่งเพชร และสุนันทา กิ่งไพบูลย์. 2556. การศึกษาความแปรปรวนเชิงพื้นที่ของค่าการนำไฟฟ้าในพื้นที่ดินภายใต้อิทธิพลของเกลือในภาคตะวันออกเฉียงเหนือ: ระยะห่างที่เหมาะสมระหว่างจุดเก็บตัวอย่างดิน. แก่นเกษตร 41(ฉบับพิเศษ 2): 129-136.

สำนักงานเศรษฐกิจการเกษตร. 2562. สถิติการเกษตรของประเทศไทยปี 2562. กระทรวงเกษตรและสหกรณ์.

เอิบ เขียวรื่นรมณ์. 2547. คู่มือปฏิบัติการ การสำรวจดิน. สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.

Antwi, M., A.A. Duker, M. Fosu, and R.C. Abaidoo. 2016. Geospatial approach to study the spatial distribution of major soil nutrients in the Northern region of Ghana. Cogent Geosci. 2.

Behera, S.K., R.K. Mathur, A.K. Shukla, K. Suresh, and C. Prakash. 2018. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena. 165: 251-259.

Bogunovic, I., S. Trevisani, M. Seput, D. Juzbasic, and B. Durdevic. 2017. Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. Catena. 154: 50-62.

Clark, I. 1982. Practical Geostatistics. Applied Science Publishers, London.

Clark, I. 2001. Practical Geostatistics. Geostokos Limited, Alloa Bussiness Centre, Alloa.

Denton, O.A., V.O. Aduramigba-Modupe, A.O. Ojo, O.D. Adeoyolanu, K.S. Are, A.O. Adelana, A.O. Oyedele, A.O. Adetayo and A.O. Oke. 2017. Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food Agric. 3(1).

Doll, E.C., and R.E. Lucas. 1973. Testing Soil for Potassium, Calcium, and Magnesium, in L.M. Walsh and J.D. Beaton, Eds., Soil Testing and Plant Analysis, Soil Science Society of America, Madison, Wisconsin, USA.

Duffera, M., J.G. White, and R. Weise. 2007. Spatial variability of southeastern US coastal plain soil physical properties: Implications for site-specific management. Geoderma 137: 327-339.

Gao, X., Y. Xiao, L. Deng, L. Qi-quan, W. Chang-quan, L. Bing, D. Ou-ping, and Z. Min. 2019. Spatial variability of soil total nitrogen, phosphorus and potassium in Renshou County of Sichuan Basin, China. J. Integr. Agric. 18: 279–289.

Guan, F., M. Xia, X. Tang, and S. Fan. 2017. Spatial variability of soil nitrogen, phosphorus and potassium contents in Moso bamboo forests in Yong’an City, China. Catena. 150: 161–172.

IT Department. 2001. ILWIS 3.0 Academic User’s Guide. International Institute for Aerospace Survey and Earth Sciences (ITC), Netherlands.

Liu, Z.P., M.A. Shao, and Y.Q. Wang. 2013. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire loess plateau region of China. Geoderma. 197-198: 67-78.

Marschner, P. 2012. Marschner’s Mineral Nutrition of Higher Plants, third ed. Academic Press, San Diego.

Oliver, M.A., and R. Webster. 2014. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena. 113: 56-69.

Oosterhuis, D., D. Loka, E. Kawakami, and W. Pettigrew. 2014. The physiology of potassium in crop production. Adv. Agron. 126: 203–234.

Phillips, J.D. 1986. Measuring complexity of environmental gradient. Vagitatio 64: 95-102.

Phontusang, P., R. Katawatin, K. Pannangpetch, S. Kingpaiboon. and R. Lerdsuwansri. 2014. Spatial Variability of Sodium Adsorption Ratio and Sodicity in Salt-Affected Soils of Northeast Thailand. Adv Mat Res. 931-932: 709-715.

Phontusang, P. 2016. Improving Salt-affected Soils Mapping in Northeast Thailand. Ph D. Thesis. Khon Kaen University, Khon Kaen.

Phontusang, P., R. Katawatin, K. Pannangpetch, R. Lerdsuwansri, and S. Kingpaiboon. 2017. Sampling Strategies for Geostatistical Analyses of Field-Scale Spatial Variability of Electrical Conductivity in Inland Salt-Affected Soils. IJG. 13: 71-84.

Phontusang, P., R. Katawatin, K. Pannangpetch, R. Lerdsuwansri, S. Kingpaiboon, and K. Wangpichet. 2018. Field-scale spatial variability of electrical conductivity of the inland, salt-affected soil of Northeast Thailand. Walailak. 15: 341-355.

Robertson, G.P. 1987. Geostatistics in ecology: interpolating with known variance. Ecology. 68: 744-748.

Shukla, A.K., S.K. Behera, N.K. Lenka, P.K. Tiwari, C. Prakash, R.S. Malik, N.K. Sinha, V.K. Singh, A.K. Patra, and S.K. Chaudhary. 2016. Spatial variability of soil micronutrients in the intensively cultivated Trans Gangetic Plains of India. Soil Tillage Res. 163: 282– 289.

Sumner, M.E. 1999. Handbook of Soil Science. CRC press, Boca Raton, New York.

Sumner, M.E. 2000. Handbook of Soil Science. CRC Press, Washington.

Wang, J., R. Yang, and Z. Bai. 2015. Spatial variability and sampling optimization of soil organic carbon and total nitrogen for Minesoils of the loess plateau using geostatistics. Ecol. Eng. 82: 159-164.

Webster, R., and M.A. Oliver. 2001. Geostatistics for Environmental Scientists. John Wiley & Son Ltd., West Sussex.

Yanai, J., S. Nakata, S. Funakawa, E. Nawata, R. Katawatin, T. Tulaphitak, and T. Kosaki. 2007. Evaluation of nutrient Availability of sandy soil in Northeast Thailand with references to growth, yield and nutrient uptake by maize. Jpn. J. Trop. Agr. 51: 169-176.