อิทธิพลของการเคลือบเมล็ดด้วยฮอร์โมนพืชต่อคุณภาพเมล็ดพันธุ์ และการเจริญเติบโตของต้นกล้าของมะเขือเทศ
Main Article Content
บทคัดย่อ
การทดลองนี้มีวัตถุประสงค์เพื่อค้นหาชนิดและอัตราของฮอร์โมนพืชที่เหมาะสมกับการเคลือบเมล็ดพันธุ์
มะเขือเทศต่อความงอก ความแข็งแรง และการเจริญเติบโตของต้นกล้าหลังการเคลือบและหลังการเร่งอายุเมล็ดพันธุ์
ทำทดลองที่ห้องปฏิบัติการเทคโนโลยีเมล็ดพันธุ์ โรงงานปรับปรุงสภาพเมล็ดพันธุ์ คณะเกษตรศาสตร์ มหาวิทยาลัย
ขอนแก่น เคลือบเมล็ดพันธุ์มะเขือเทศด้วยเครื่องเคลือบเมล็ดพันธุ์แบบจานหมุนรุ่น SKK10 ใช้พอลิเมอร์
Polyvinylpyrrolidone (PVP-K90) ความเข้มข้น 4.0% ร่วมกับฮอร์โมนพืช 3 ชนิด และความเข้มข้นที่ต่างกัน คือ
Gibberellins (GA) ที่ความเข้มข้น 1.5, 2.0 และ 2.5% Indole-3-butyric acid (IBA) ที่ความเข้มข้น 0.2, 0.3 และ 0.4%
และ Indole-3-acetic acid (IAA) ที่ความเข้มข้น 1.0, 1.5 และ 2.0% หลังจากนั้นตรวจสอบคุณภาพเมล็ดพันธุ์หลังการ
เคลือบ และตรวจสอบความแข็งแรงด้วยวิธีการเร่งอายุเมล็ดพันธุ์ ผลการตรวจสอบพบว่าการเคลือบเมล็ดพันธุ์ร่วมกับ
ฮอร์โมน IAA อัตรา 2.0% ทำให้ความงอกเพิ่มขึ้นสูงที่สุดประมาณ 27% เมื่อเปรียบเทียบกับเมล็ดพันธุ์ที่ไม่เคลือบร่วม
กับฮอร์โมนพืช จากการทดสอบในห้องปฏิบัติการ และเมื่อตรวจสอบคุณภาพของเมล็ดพันธุ์หลังการเร่งอายุในสภาพ
ห้องปฏิบัติการ พบว่าเมล็ดที่เคลือบร่วมกับฮอร์โมน IAA ที่อัตรา 2.0% ทำให้เมล็ดพันธุ์มีความแข็งแรงสูง โดยมีความ
งอกในสภาพเรือนทดลอง และความเร็วในการงอกเพิ่มขึ้นประมาณ 65 และ 86% ตามลำดับ เมื่อเปรียบเทียบกับเมล็ด
พันธุ์ที่ไม่เคลือบร่วมกับฮอร์โมนพืช นอกจากนี้การเคลือบเมล็ดพันธุ์ด้วยฮอร์โมนพืชทุกๆ กรรมวิธีทำให้การเติบโตของ
ต้นกล้าสูงกว่าเมล็ดพันธุ์ที่ไม่เคลือบร่วมกับฮอร์โมนเมื่อตรวจสอบหลังการเคลือบและหลังการเร่งอายุเมล็ดพันธุ์
Article Details
วารสารเกษตรพระจอมเกล้า
References
ทางวิชาการเมล็ดพันธุ์พืชแห่งชาติ ครั้งที่ 11 ณ.โรงแรมกรนด์จอมเทียนพาเลซ เมืองพัทยา จังหวัดชลบุรี ระหว่างวันที่ 20 - 23
พฤษภาคม 2557
กิตติวรรณ กล้ารอด และ บุญมี ศิริ2558 .. ผลของการเคลือบด้วยฮอร์โมน IAA ต่อคุณภาพเมล็ดพันธุ์มะเขือเทศลูกผสม. ใน : ประชุม
วิชาการเกษตร ครั้งที่ 16 วันที่ 26-27 มกราคม 2558. คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น, ขอนแก่น.
สมาคมการค้าเมล็ดพันธุ์. 2556. ปริมาณและมูลค่าการส่งออกเมล็ดพันธุ์ควบคุม ประจำปี 2555. แหล่งข้อมูลhttps://docs.google.com/
viewer?a=v&q=cache:3vH3atHySIgJ: www.thasta.com/pdf/2012 ค้นเมื่อ 18 มีนาคม 2556.
Bakrim, A., M. Lamhamdi, F. Sayah and F. Chibi. 2007. Effects of plant hormones and 20-hydroxyecdysone on tomato
(Lycopersicum esculentum) seed germination and seedlings growth. African Journal of Biotechnology Vol. 6 (24),
pp. 2792-2802.
Bhore S.J., R.S. Nadgauda and R.V. Gadre. 1999. Effect of phytohormones on root elongation of germinating tomato
Lycopersicon esculentum Mill. Var. Sun 5715 seedling. Indian journal of Experimental Biology. Vol. 37, January 1999,
pp. 102-103.
Carr, D. J., D.M. Reid, and K.G.M. Skene. 1964. The supply of gibberellins from the root to the shoot. Plania 63: 382-392.
Chakraborti, N. and S. Mukherji. 2003. Effect of phytohormones pretreatment on nitrogen metabolism in Vigna radiate under
salt stress. Biol. Plant, 46:63-66.
Chauhan, J.S., Y.K. Tomar, A. Badoni, N.I. Singh and A. seema. 2009. Morphology, germination and early seedling growth
in Phaseolus mungo L. with reference to the influence of various plant growth substances. J. Am. Sci., 6:34-41.
Crozier, A. and D. M. Reid. 1971. Do roots synthesize gibberellins? Can. J. Bot. 49: 967-975.
Evans, M. L. 1984. Functions of hormones at the cellular level of organization. In Encyclopedia Plant Physiol. New Series.
Vol. 10: Hormonal Regulation of Development II. Edited by Scott, T. K. pp. 50-53. Springer Verlag, New York.
FAO. 2015. Seeds. Available: http://www.fao.org/seeds/en/ Apr. 4. 2015.
Feldman, L.J. 1984. Regulatioin of root development. Annu. Rev. Plant Physiol. 35: 223-242.
Gidrol, X., P.A. Sabelli, Y.S. Fern and A.K. Kush. 1996. Annexin–like protein from Arabidopsis thaliana rescues delta oxyR
mutant of Escherichia coli from H2O2 stress. Proc Natl Acad Sci., USA, 93:11268–73.
Goodwin, P. B. 1978. Phytohormones and growth and development of organs of the vegetative plant. In Phytohormones and
Related Compounds: A Comprehensive Treatise II. Phytohormones and the Development of Higher Plants. Edited by
Letham, D. S., Goodwin, P. B. and Higgins, T. J. V. pp. 31-173. Elsevier North-Holland Biomedical Press, Inc., Amsterdam.
Groot, S.P.C. and C.M. Karssen. 1987. Gibberellins regulate seed germination in tomato by endosperm weakening: a study
with gibberellindeficient mutants. Planta 171:525-531.
ISTA. 2004. International Rules for Seed testing. Seed Science and technology. Glattbrugg, Switzerland.
Kucera B., M. A. Cohn and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and
germination. Seed Sci. Res. 15: 281-307.
Kumar, M., R.K. Agnihotri, R.Vamil and R. Sharma. 2014. Effect of phytohormones on seed germination and seedling growth
of Coriandrum sativum L. Pakistan Journal of Biological Sciences 17(4): 584-596.
Miransari, M., and D.L. Smith. 2014. Plant hormones and seed germination .Environmental and Experimental Botany 99: 110–121.
Murakami, Y. 1968. Gibberellin-like substances in roots of Oryza saliva, Pharbitis nil, and Ipomoea batatas and the site of
their synthesis in the plant. Bot. Mag (Tokyo) 81: 334-343.
Mumtaz Khan M., M. Javed Iqbal, M. Abbas, H. Raza, R. Waseem and Arshad. 2004. Loss of vigour and viability in aged
onion (Allium cepa L.) Seeds, Int. J. Agri. biol. 6(4):
Philosoph-Hadas, S., H. Friedman and S. Meir,. 2005. Gravitropic bending and plant hormones. Vitam. Horm. 72: 31-78.
Prochazka, S. 1981. Translocation of growth regulators from roots in relation to the stem apical dominance in pea
(Pisum sativum L.) seedlings. In Structure and Function of Plant Roots. Edited by Brouwer, R. et al. pp. 407-409,
Martinus Nijhoff/Dr W. Junk Publishers, The Hague.
Salisbury, F. and C. Ross. 2000. Fisiología de las plantas. A. Alonso. Primera Edición. Editorial Paraninfo Thomson learning.
España, p. 988.
Scarbrough, J. and Thompson, M. 2004. Do rooting hormones affect the germination rate of seeds?. California state science
fair 2004 project summary.
Scott, T. K. 1972. Auxins and roots. Anna. Rev. Plant Physiol. 23: 235-258.
Shohani F., A. A. Mehrabi, R. A. Khavarinegad, Z. Safari and S. Kian. 2014. The effect of gibberellic acid (GA3) on seed
germination and early growth of lentil seedlings under salinity stress. Middle-East Journal of Scientific Research 19 (7):
995-1000, 2014.
Tanimoto, E. 1987. Gibberellin-dependent root elongation in Lactuca sativa: Recovery from growth retardant-suppressed
elongation with thickening by low concentration of GA3. Plant Cell Physiol. 28(6): 963-973.
TeKrony, D.M. and J.L. Hunter. 1995. Effect of seed maturation and genotype on seed vigor in maize. Crop Sci. 35: 857-862.
Tognoni, F., A. H. Halevy, and S. H. Wittwer. 1967. Growth of bean and tomato plants as affected by root absorbed growth
substances and atmospheric carbon dioxide. Planta 72: 43-52.
Torrey, J. G. 1976. Root hormones and plant growth. Annu. Rev. Plant Physiol. 27: 435-45.
Tiwari, D.K., P. Pandey, S.P. Giri and J.L. Dwivedi. 2011. Effect of gibberellic acid (GA3) and other plant growth regulators
on hybrid rice seed production. Asian J. Plant Sci., 10: 133–139.