ปริมาณสารพฤกษเคมี และการต้านอนุมูลอิสระของสารสกัดจากดอกดาวเรืองฝรั่งเศส
Main Article Content
บทคัดย่อ
ดาวเรืองฝรั่งเศสจัดเป็นไม้ประดับพุ่มเตี้ย มีกลีบดอกหลากหลายสี ซึ่งดาวเรืองบางชนิดมีรายงานสรรพคุณทางเภสัชวิทยา งานวิจัยนี้มีวัตถุประสงค์เพื่อวิเคราะห์ปริมาณสารพฤกษเคมี และทดสอบประสิทธิภาพการเป็นสารต้านอนุมูลอิสระของสารสกัด
ด้วยน้ำจากดอกดาวเรืองฝรั่งเศส 10 พันธุ์ ได้แก่ KPS01-SY, KPS02-SO, KPS03-SO, KPS04-DO, KPS05-DY, KPS06-SR, KPS07-SY, KPS08-DO, KPS09-DY และ KPS10-DR ผลการทดลองพบว่า สารสกัดด้วยน้ำจากดอกดาวเรืองฝรั่งเศส
พันธุ์ KPS08-DO, KPS09-DY และ KPS10-DR มีปริมาณสาร flavonoids และ phenolics สูงกว่าสารสกัดจากดอกดาวเรืองพันธุ์อื่น นอกจากนี้ยังพบว่าสารสกัดด้วยน้ำจากดาวเรืองพันธุ์ KPS08-DO และ KPS09-DY มีปริมาณสาร carotenoids สูง
เมื่อทดสอบประสิทธิภาพการเป็นสารต้านอนุมูลอิสระด้วยปฏิกิริยา DPPH radical scavenging พบว่า สารสกัดด้วยน้ำ
จากดอกดาวเรืองพันธุ์ KPS08-DO มีประสิทธิภาพในการยับยั้งการเกิดอนุมูลอิสระได้ดีที่สุด (IC50 เท่ากับ 64.51 ไมโครกรัมต่อมิลลิลิตร) ส่วนการยับยั้งปฏิกิริยา ABTS radical scavenging พบว่า สารสกัดด้วยน้ำจากดอกดาวเรืองทุกพันธุ์มีประสิทธิภาพสูงในการยับยั้งการเกิดอนุมูลอิสระ (IC50 อยู่ในช่วง 27.09 ถึง 29.38 ไมโครกรัมต่อมิลลิลิตร) ซึ่งมีประสิทธิภาพสูงกว่าสาร BHT (IC50 เท่ากับ 57.48 ไมโครกรัมต่อมิลลิลิตร) โดยที่สารสกัดด้วยน้ำจากดอกดาวเรืองพันธุ์ KPS01-SY, KPS03-SO และ
KPS04-DO มีประสิทธิภาพในการยับยั้งปฏิกิริยา PMS-NADPH radical scavenging ได้ดีที่สุด (IC50 เท่ากับ 165.30, 131.96 และ 148.33 ไมโครกรัมต่อมิลลิลิตร ตามลำดับ) ส่วนสารสกัดด้วยน้ำจากดอกดาวเรืองพันธุ์ KPS01-SY สามารถยับยั้ง
การเกิดปฏิกิริยา nitric oxide radical scavenging ได้ (IC50 เท่ากับ 587.56 ไมโครกรัมต่อมิลลิลิตร) ในขณะที่สารสกัดด้วยน้ำจากดอกดาวเรืองฝรั่งเศสพันธุ์ KPS09-DY และ KPS10-DR มีประสิทธิภาพในการยับยั้งปฏิกิริยา oxidation ของ LDL ได้ดี
(IC50 เท่ากับ 234.93 และ 232.08 ไมโครกรัมต่อมิลลิลิตร ตามลำดับ)
Article Details
วารสารเกษตรพระจอมเกล้า
References
โกสินทร์ วิระษร, กุลธิดา กล้ารอด, ประณิธิ หงส์ประภาส และพัชรี บุญศิริ. 2557. ภาวะถูกออกซิไดซ์เกินสมดุลและสารต้านออกซิเดชันกับโรคมะเร็ง. ศรีนครินทร์เวชสาร 29(2): 207-219.
จำเนียร ชมภู, เชษฐ์ชัชชัยย์ นิลาภรณ์, จุฑามาศ เมรสนัด และราตรี บุญเรืองรอด. 2562. ผลของสารสกัดด้วยน้ำจากดอกดาวเรืองในการต้าน
อนุมูลอิสระและยับยั้งกิจกรรมของเอนไซม์แอลฟา-อะไมเลส และ แอลฟา-กลูโคซิเดส. แก่นเกษตร 47(2): 293-306.
บุหรัน พันธุ์สวรรค์. 2556. อนุมูลอิสระ สารต้านอนุมูลอิสระ และการวิเคราะห์ฤทธิ์ต้านอนุมูลอิสระ. วารสารวิทยาศาสตร์และเทคโนโลยี 21(3):
-286.
ภูริพันธุ์ สุวรรณเมฆ. 2559. ดาวเรือง ดอกไม้แห่งความรุ่งเรือง. เกษตรก้าวหน้า 29(3): 70-77.
ศุกฤชชญา เหมะธุลิน และสุชีลา เตชะวงศ์เสถียร. 2559. ผลของสายพันธุ์ต่อความสามารถในการต้านอนุมูลอิสระและฤทธิ์การต้านออกซิเดชันของมะเขือเทศราชินี. แก่นเกษตร 44(ฉบับพิเศษ 1): 181-185.
Adwas, A. A., Elsayed, A. S., IAzab, A. E., and Quwaydir, F. A. 2019. Oxidative stress and antioxidant mechanisms in human body. Journal of Biotechnology 6(1): 43-47.
Akshaya, H. R., Banyal, N. , Singh, K. P., Saha, S., Panwar, S., and Bharadwaj, C. 2016. Determination and correlation of carotenoid pigments and their antioxidant activities in marigold (Tagetes sp.) flowers. Indian Journal of Agricultural Science 87(3): 390-396.
Benko, F., Palkovičová, V., Ďuračka, M., Árvay, J., Lukáč, N., and Tvrdč, E. 2019. Antioxidant effects of marigold (Calendula officinalis) flower extract on the oxidative balance of bovine spermatozoa. Contemporary Agriculture 68(3-4): 92-102.
Boonnoun, P., Opaskonkun, T., Prasitchoke, P., Goto, M., and Shotipruk, A. 2012. Purification of free lutein from marigold flower by liquid chromatography. Engineering Journal 16(5): 26-27.
Boskou, G., Salta, F. N., Chrysostomou, S., Mylona, A., Chiou, A., and Andrikopoulos, N. K. 2006. Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chemistry 94(4): 558-564.
Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., and Vidal, N. 2006. Antioxidant activity of some algerian medicinal plants extracts containing phenolics. Food Chemistry 97(4): 654-660.
Ghasemzadeh, A., Jaafar, H. Z. E., and Rahmat, A. 2010. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 15(6): 4324-4333.
Govindarajan, R., Vijayakumar, M., Rao, C. V., Shirwaikar, A., Rawat, A. K. S., Mehrotra, S., and Pushpangadan, P. 2004.
Antioxidant potential of Anogeissus latifolia. Biological and Pharmaceutical Bulletin 27(8): 1266-1269.
Hsu, C. F., Peng, H., Basle, C., Travas-Sejdic, J., and Kilmartin, P. A. 2011. ABTS•+ scavenging activity of polypyrrole, polyaniline and poly (3,4-ethylenedioxythiophene). Society of Chemical Industry 60(1): 69-77.
Jobi, X. 2016. Antimicrobial activity and phytochemical analysis of Tagetes erecta L and Tagetes patula L. Department of Life Sciences, Christ University.
Kähkänen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., and Heinonen, M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry 47(10): 3954-3962.
Kao, F. J., Chiu, Y. S., and Chiang, W. D. 2014. Effect of water cooking on antioxidant capacity of carotenoid-rich vegetables in Taiwan. Journal of Food and Drug Analysis 22(2): 202-209.
Koldas, S., Demirtas, I., Ozen, T., Demirci, M. A., and Behcet, L. 2015. Phytochemical screening, anticancer and antioxidant activities of Origanum vulgare L. ssp. Viride (Boiss.) Hayek, a plant of traditional usage. Journal of the Science of Food and Agriculture 95(4): 786-798.
Koyuncu, I. 2018. Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. extract.
Cellular and Molecular Biology 64(3): 25-34.
Lau, K. M., He, Z. D., Dong, H., Fung, K. P., and But, P. P. H. 2002. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum. Journal of Ethnopharmacology 83(1-2): 63-71.
Liu, Z. Q. 2020. Bridging free radical chemistry with drug discovery: a promising way for finding novel drugs efficiently.
European Journal of Medicinal Chemistry 189: 112020.
Mahfouz, M. M., Zhou, S. Q., and Kummerow, F. A. 2009. Curcumin prevents the oxidation and lipid modification of LDL and
its inhibition of prostacyclin generation by endothelial cells in culture. Prostaglandins and Other Lipid Mediators 90(1-2): 13-20.
Nantitanon, W., Yotsawimonwat, S., and Okonogi, S. 2010. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. Food Science and Technology 43(7): 1095-1103.
Pietta, P. G. 2000. Flavonoids as antioxidants. Journal of Natural Products 63(7): 1035-1042.
Priyanka, D., Tripathi, S., and Verma, K. N. 2013. A brief study on marigold (Tagetes erecta): a review. International Research Journal of Pharmacy 4(1): 26-27.
Rahman, M. A., Abdullah, N., and Aminudin, N. 2015. Antioxidative effects and inhibition of human low density lipoprotein oxidation
in vitro of polyphenolic compounds in Flammulina velutipes (golden needle mushroom). Oxidative Medicine and Cellular Longevity 2015: 403023.
Ranganna, S. 1999. Handbook of analysis and quality control for fruit and vegetable products. New Delhi: Tata Mc-Graw Hill publishing company Ltd.
Rattan, A. K., and Arad, Y. 1998. Inhibition of LDL oxidation by new estradiol receptor modulator compounds LY-139478, comparative effect with other steroids. Atherosclerosis 136(2): 305-314.
Riemersma, R. A., Rice-Evans, C. A., Tyrrell, R. M., Clifford, M. N., and Lean, M. E. J. 2001. Tea flavonoids and cardiovascular health. An International Journal of Medicine 94(5): 277-282.
Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., and Steinberg, D. 1984. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoproteein phospholipids. Proceedings of the National Academy of Sciences of the United States of America 81(2): 3883-3887.
Vaya, J., Mahmood, S., Goldblum, A., Aviram, M., Volkova, N., Shaalan, A., Musa, R., and Tamir, S. 2003. Inhibition of LDL oxidation by flavonoids in relation to their structure and calculated enthalpy. Phytochemistry 62(1): 89-99.
Wang, W., Xu, H., Chen, H., Tai, K., Liu, F., and Gao, Y. 2016. In vitro antioxidant, antidiabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.). Journal of Food Science and Technology 53(6): 2614-2624.
Xu, D. P, Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J. J., and Li, H. B. 2017. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. International Journal of Molecular Sciences 18(1): 96-128.
Zheng, W., and Wang, S. Y. 2001. Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and
Food Chemistry 49(11): 5165-5170.