The Effect of Nitrogen Sources on the Productivity and Biochemical Composition of Spirulina (Arthrospira) platensis

Main Article Content

Janethida Kiatmontri
Suneerat Ruangsomboon

Abstract

       Assessed an appropriate nitrogen source for S. platensis culture to achieve higher biomass yields and pigments. Cultivated S. platensis in six different nitrogen sources (sodium nitrate, potassium nitrate, ammonium sulfate, urea, ammonium nitrate, and ammonium chloride). All experiments received the same concentration of nitrogen, 0.4 g nitrogen per liter. The results showed that                S. platensis cultivated under sodium nitrate as a nitrogen source had the highest biomass yield (0.24 ± 0.01 g/l), protein (68.10 ± 2.92 percent), phycocyanin (198.74 ± 11.11 mg/g), and phycoerythrin (155.46 ± 9.81 mg/g). Carotenoids were also high, 0.0011 ± 0.00 mg/g which carotenoids, phycocyanin and phycoerythrin are important pigments with antioxidant activity. While S. platensis fed potassium nitrate had the highest lipid profile, 35.32 ± 7.50 percent, S. platensis treated with ammonium nitrate were high in omega-6 beneficial fatty acids. The highest was Gamma-linolenic acid (GLA) at 22.08 percent. This study demonstrates that sodium nitrate is an ideal nitrogen source for S. platensis.

Article Details

How to Cite
Kiatmontri, J., & Ruangsomboon, S. . (2023). The Effect of Nitrogen Sources on the Productivity and Biochemical Composition of Spirulina (Arthrospira) platensis . King Mongkut’s Agricultural Journal, 41(1), 102–111. https://doi.org/10.55003/kmaj.2023.04.30.011
Section
Research Articles

References

Ajayan, K. V., Selvaraju, M., & K. Thirugnanamoorthy. (2012). Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and Bioenergy 47, 436-441.

Asghari, A., Fazilati, M., Latifi, A. Salavati, M. H., & A. Choopani. (2016). A review on antioxidant properties of Spirulina. Journal of Applied Biotechnology Reports 3, 345-351.

Becker, E. W. (1994) Microalgae Biotechnology and Microbiology. Great Britain: Cambridge University Press.

Bligh, E. G. & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 37, 911-917.

Chasoy, G. R., Jasso, R. M. R., Aguilar, C. N., Buitron, G., Chairez, I., & Ruiz, H. A. (2022). Growth kinetics and quantification of carbohydrate, protein, lipids, and chlorophyll of Spirulina platensis under aqueous conditions using different carbon and nitrogen sources. Bioresource Technology. 346, 1-6.

Costa, J. A. V., Cozza, K. L. Oliveira, L., & G. Magagnin. (2001). Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World Journal of Microbiology & Biotechnology. 17, 439-442.

Costa, S. S., Miranda, A. L., Andrade, B. B., Assis, D. J., Souza, C. O., Morais, M. G., Costa, J. A. V., & Druzian J. I. (2018). Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. International Journal of Biological Macromolecules. 116, 552-562

Danesi, E. D. G., Yagui, C. O. R., Sato, S., & Carvalho, J. C. M. (2011). Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazilian Journal of Microbiology. 42, 362-373.

El-Sheekh, M. M., Hassan, L. H. S., & H. H. Morsi. (2021). Growth enhancement of Spirulina platensis through Optimization of media and nitrogen sources. Egyptian Journal of Botany. 61(1), 61-69.

Hirata, T., Tanaka, M. Ooike, T., & Sakaguchi, M. (2000). Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. Journal of Applied Phycology 12, 435-439.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry. 193(1), 265-275.

Madkour, F. F., Kamil, A. E., & H. S. Nasr. (2012). Production and nutritive value or Spirulina platensis in reduced cost media. Egyptian Journal of Aquatic Research. 38, 51-57.

Mirhosseini, N., Davarnejad, R., Hallajisani, A., Europa, E. C., Tavakoli, O., Franco, M. C., & Valdivia, V. B. (2021a). Cultivations of Arthrospira maxima (Spirulina) using ammonium sulfate and sodium nitrate as an alternative nitrogen sources. Iranian Journal of Fisheries Sciences. 20(2), 475.489.

Mirhosseini, N., Davarnejad, R., Hallajisani, A., Tavakoli, O., & Europa, E. C. (2021b). Nitrogen Starvation effect versus its excess on the performance of Arthrospira maxima in Zarrouk’s medium. International Journal of Engineering. 34(7), 1557-1568.

Ruangsomboon, S. (2020). Microalgae Cultivation and Utilizations. Bangkok: Department of Fisheries Science, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang. (in Thai).

Santos, R. R., Correa, P. S., Dantas, F. M. L., & Teixeira, C. M. L. (2019). Evaluation of the co-production of total carotenoids, C-phycocyanin and polyhydroxyalkanoates by Arthrospira platensis. Bioresource Technology Reports. 7, 1-9.

Shanti, G., Premalatha, M., & Anantharaman, N. (2018). Effects of l-amino acids as organic nitrogen source on the growth rate, biochemical composition and polyphenol content of Spirulina platensis. Algal Research. 35, 471-478.

Soletto, D., Binaghi, L., Lodi, A., Carvalho, J. C. M., & Converti, A. (2005). Batch and fed batch cultivations of Spirulina platensis using ammonium sulfate and urea as nitrogen sources. Aquaculture. 243, 217-224.

Sudhakar, K. & Premalatha, M. (2012). Micro-algal technology for sustainable energy production: State of the art. Journal of Sustainable Energy & Environment. 3, 59-62.

Uddin, A. J., Ifaz, M. I., Husna, M. A., Sakib, I., & Rakibuzzaman, M. (2020). Comparative growth analysis of Spirulina platensis using urea as a nitrogen substitute for NaNO3. International Journal of Business, Social and Scientific Research. 8, 76-80.

Zarrouk, C. (1966). Contribution to the study of a cyanophycea. Influence of various physical and chemical factors on the growth and photosynthesis of Spirulina maxima. Paris: University of Paris.