Gene Segregation for Anthocyanin Contents in F2 Population Between Purple Glutinous Rice from Highland and Pathum Thani 1 Grown at Lowland and Highland Locations

Main Article Content

Pittawat Somboo
Chanakan Thebault Prom-u-thai
Tonapha Pusadee
Sansanee Jamjod

Abstract

Purple rice contains anthocyanin in/ purple pericarp which acts as an anti-oxidative properties to many diseases. The objectives of this study were to evaluate gene segregation and environment on grain anthocyanin content. A F2 population was derived from a cross between the local purple glutinous rice variety from highland (Bieisu 037) and improved white rice variety (Pathum Thani 1; PTT1). Two-hundred and sixty five F2 plants were grown at 2 locations (lowland and highland). The data were recorded for pericarp color, anthocyanin content and grain yield. The pericarp color of the F2 population were segregated at the ratio of 9 purple: 3 brown: 4 white which was fitted into 2 complementary genes controlling model. One hundred F2 plants with purple pericarp were further selected to determine grain anthocyanin content and results from both locations were compared. Continuous segregation for the grain anthocyanin content of F2 populations, ranged from 0.2 to 370.3 mg/100 g with skewed toward that of the PTT1 parent in both locations. Moreover, genotype by environment interaction effect on grain anthocyanin content was observed. The F2 plants grown on the highland provided the grain anthocyanin (average 58.9 mg/100 g) doubled than that of the lowland (average 24.9 mg/100 g). It implied that the environment affected on anthocyanin content. There was positive correlation between the grain anthocyanin content in F2 population at lowland and highland (r = 0.788**). The dilution effect did not affect grain anthocyanin content. The information from this study will be useful for selection in breeding program for high anthocyanin content rice varieties. However, increasing in population size will provide more opportunity for selection of plants with desirable traits and high grain anthocyanin content. Due to genotype by environmental effect on grain anthocyanin content, therefore the selection should be done in the target locations.

Article Details

Section
Research Articles

References

ดำเนิน กาละดี และ ศันสนีย์ จำจด. 2552. ความแตกต่างทางพันธุกรรมของสีม่วง. หน้า 49-73. ใน: รายงานวิจัยฉบับสมบูรณ์เรื่องพันธุศาสตร์การปรับปรุงพันธุ์และโภชนาศาสตร์เกษตรของข้าวเหนียวดำ. สถาบันวิจัยและพัฒนาวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเชียงใหม่, เชียงใหม่.

พีรนันท์ มาปัน สุพรรณิกา ติ๊บขัน ชนากานต์ เทโบลต์ พรมอุทัย ดำเนิน กาละดี และ ศันสนีย์ จำจด. 2557. การคัดเลือกในชั่วต้นเพื่อลักษณะแอนโทไซยานินในเมล็ดสูงและไม่ไวต่อช่วงแสงในลูกผสมชั่วที่ 2 ระหว่างข้าวพันธุ์กํ่าดอยสะเก็ดและปทุมธานี 1. วารสารนเรศวรพะเยา 7(2): 160-171.

สุภาภรณ์ ญะเมืองมอญ และ ชนากานต์ เทโบลต์ พรมอุทัย. 2559. ความแปรปรวนของปริมาณแอนโทไซยานินและความสามารถในการต้านอนุมูลอิสระของข้าวเหนียวก่ำพันธุ์พื้นเมืองของไทย. วารสารเกษตร 32(2): 191-199.

Abdel-Aal, E.-S.M. and P. Hucl. 1999. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chemistry 76: 350-354.

Ham, T.H., S.W. Kwon, S.N. Ryu and H.J. Kon. 2015. Correlation analysis between grain color and cyanidin-3-glucoside content of rice grain in segregate population. Plant Breeding and Biotechnology 3: 160-166.

Kim, C.K., M.A. Cho, Y.H. Choi, J.A. Kim, Y.H. Kim, Y.K. Kim and S.H. Park. 2011. Identification and characterization of seed-specific transcription factors regulating anthocyanin biosynthesis in black rice. Journal of Applied Genetics 52: 161-169.

Maeda, H., T. Yamaguchi, M. Omoteno, T. Takarada, K. Fujita, K. Murata, Y. Iyama, Y. Kojima, M. Morikawa, H. Ozaki, N. Mukaino, Y. Kidani and T. Ebitani. 2014. Genetic dissection of black grain rice by the development of a near isogenic line. Breeding Science 64: 134-141.

Matsuo, T., Y. Futsuhara, F. Kikichi and H. Yamaguchi. 1997. Science of the Rice Plant. Food and Agriculture Policy Research Center, Tokyo.

Rahman, M.M., K.E. Lee, E.S. Lee, M.N. Matin, D.S. Lee, J.S. Yun, J.B. Kim and S.G. Kang. 2013. The genetic constitutions of complementary genes Pp and Pb determine the purple color variation in pericarps with cyanidin-3-O-glucoside depositions in black rice. Journal of Plant Biology 56: 24-31.

Rerkasem, B., S. Jumrus, N. Yimyam and C. Prom-u-thai. 2015. Variation of grain quality among Thai purple rice genotypes grown at two different altitudes. ScienceAsia 41: 377-385.

Shen, Y., L. Jin, P. Xiao, Y. Lu and J.S. Bao. 2009. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science 49: 106-111.

Sompong, R., S. Siebenhandl-Ehn, G. Linsberger-Martin and E. Berghofer. 2011. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry 124: 132-140.

Somsana, P., P. Wattana, B. Suriharn and J. Sanitchon. 2013. Stability and genotype by environment interactions for grain anthocyanin content of Thai black glutinous upland rice (Oryza sativa). SABRAO Journal of Breeding and Genetics 45(3): 523-532.

Wang, C.X. and Q.Y. Shu. 2007. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chinese Science Bulletin 52: 3097-3104.

Yamane, T., S.T. Jeong, N. Goto-Yamamoto, Y. Koshita and S. Kobayashi. 2006. Effects of temperature on anthocyanin biosynthesis in grape berry skins. American Journal of Enology and Viticulture 57: 54-59