สารสกัดด้วยน้ำจากวัชพืชเถาเลื้อยที่มีฤทธิ์ต้านอนุมูลอิสระและยับยั้งกิจกรรมของเอนไซม์ที่เกี่ยวข้องกับภาวะระดับน้ำตาลในเลือดสูงและภาวะอ้วน

Main Article Content

จำเนียร ชมภู
บุญขวัญ คิดสม
วราภรณ์ ทิพย์โกศลวงศ์
มนสิชา คำกองแก้ว

บทคัดย่อ

ปัจจุบันวัชพืชบางชนิดได้รับความสนใจนำมาใช้ประโยชน์เป็นพืชสมุนไพร เนื่องจากมีสารพฤกษเคมีที่มีรายงานว่ามีฤทธิ์รักษาความผิดปกติของร่างกายมนุษย์ได้ การทดลองนี้จึงมีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพของสารสกัดด้วยน้ำจากใบวัชพืชเถาเลื้อย จำนวน 9 ชนิด ได้แก่ กะทกรก กระพังโหม ขยุ้มตีนหมา โคกกระออม ตำลึง ถั่วเซนโตร ถั่วเซอราโต้ มะระขี้นก และสะอึก ในการต้านอนุมูลอิสระด้วยปฏิกิริยา DPPH, ABTS, NO radical scavenging และ LDL oxidation และทดสอบฤทธิ์ในการยับยั้งกิจกรรมของเอนไซม์ที่เกี่ยวข้องกับภาวะน้ำตาลในเลือดสูง (ได้แก่ a -amylase และ a-glucosidase) และภาวะอ้วน (ได้แก่ pancreatic lipase และ 15-lipoxygenase) ผลการทดลองพบว่า สารสกัดด้วยน้ำจากใบกะทกรก ถั่วเซนโตร มะระขี้นก และโคกกระออมมีประสิทธิภาพในการต้านอนุมูลอิสระของ DPPH·, ABTS·+, NO· และ ox-LDL ได้สูงที่สุด ตามลำดับ นอกจากนี้ สารสกัดด้วยน้ำจากใบวัชพืชทุกชนิดยังแสดงประสิทธิภาพในการยับยั้งอนุมูลอิสระของ ABTS·+ ได้มากกว่า 79 เปอร์เซ็นต์ ส่วนฤทธิ์ในการยับยั้งกิจกรรมของเอนไซม์ที่เกี่ยวข้องกับภาวะน้ำตาลในเลือดสูงและภาวะอ้วนนั้น สารสกัดด้วยน้ำจากใบของตำลึงมีฤทธิ์ในการยับยั้งกิจกรรมของเอนไซม์ a-glucosidase และ pancreatic lipase ได้สูง ในขณะที่สารสกัดด้วยน้ำจากใบโคกกะออมมีฤทธิ์ในการยับยั้งกิจกรรมของเอนไซม์ a-amylase ได้สูง จากผลการทดลองวัชพืชท้องถิ่น เช่น ตำลึง โคกกะออม กะทกรก ถั่วเซนโตร และมะระขี้นก สามารถนำมาแปรรูปเพื่อประกอบอาหารหรือเครื่องดื่มสมุนไพรได้ ทั้งนี้จะทำการศึกษาการจำแนกชนิดของสารพฤกษเคมีในสารสกัดด้วยน้ำจากวัชพืชดังกล่าวต่อไป

Article Details

บท
บทความวิจัย

References

Ahmad, R., H.M. Hashim, Z.M. Noor, N.H. Ismail, F. Salim, N.H. Lajis and K. Shaari. 2011. Antioxidant and antidiabetic potential of Malaysian Uncaria. Research Journal of Medicinal Plant 5: 587-595.

Annadurai, A., V. Elangovan, S. Velmurugan and R. Ravikumar. 2013. Preliminary phytochemical screening and antibacterial of Cardiospermum halicacabum L. Advances in Applied Science Research 4(5): 302-308.

Asir, P.J., S. Priyanga, S. Hemmalakshmi and K. Devaki. 2014. In vitro free radical scavenging activity and secondary metabolites in Passiflora foetida L. Asian Journal of Pharmaceutical Research and Health Care 6(2): 3-11.

Bendini, A., L. Cerretani, L. Pizzolante, T.G. Toschi, F. Guzzo, S. Ceoldo, A.M. Marconi, F. Andreetta and M. Levi. 2006. Phenolcontent related to antioxidant and antimicrobial activities of Passiflora spp. extracts. European Food Research and Technology 223(1): 102-109.

Bjerregaard, L.G, B.W Jensen, L. Ängquist, M. Osler, T.I.A. Sørensen and J.L. Baker. 2018. Change in overweight from childhood to early adulthood and risk of type 2 diabetes. The New England Journal of Medicine 378: 1302-1312.

Boskou, G., F.N. Salta, S. Chrysostomou, A. Mylona, A. Chiou and N.K. Andrikopoulos. 2006. Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chemistry 94(4): 558-564.

Capasso, J.M., E.M. Puntillo, B.R. Halpryn, G.I. Olivetti, P.E. Li and P.I. Anversa. 1992. Ameloration of effects of hypertension and diabetes on myocardium by cardiac glycoside. American Journal of Physiology-Heart and Circulatory Physiology 262(3): 734-742.

Finkelstein, E.A., O.A. Khavjou, H. Thompson, J.G. Trogdon, L. Pan, B. Sherry and W. Dietz. 2012. Obesity and severe obesity forecasts through 2030. American Journal of Preventive Medicine 42(6): 563-570.

Garza, A.L., F.I. Milagro, N. Boque, J. Campión and J.A. Martínez. 2011. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Medica 77(8): 773-785.

Hara, Y. and M. Honda. 1990. The inhibition of -amylase by tea polyphenol. Agricultural and Biological Chemistry 54(8): 1939-1945.

Hassan, S. 2020. Positive aspects of weeds as herbal remedies and medicinal plants. Journal of Research in Weed Science 3(1): 57-70.

Hsu, C.F., H. Peng, C. Basle, J. Travas-Sejdic and P.A. Kilmartin. 2011. ABTS•+ scavenging activity of polypyrrole, polyaniline and poly (3,4-ethylenedioxythiophene). Polymer International 60(1): 69-77.

Kajaria, D.R., J. Tripathi, Y.B. Tripathi and S. Tiwari. 2013. In-vitro  amylase and glucosidase inhibitory effect of ethanolic extract of antiasthmatic drug-Shirishadi. Journal of Advanced Pharmaceutical Technology & Research 4(4): 206-210.

Khan, M.F., A.K. Rawat, B. Pawar, S. Gautam, A.K. Srivastava and D.S. Negi. 2014. Bioactivity-guided chemical analysis of Melia azedarach L. (Meliaceae), displaying antidiabetic activity. Fitoterapia 98: 98-103.

Kim, J.H., H.J. Kim, H.W. Park, S.H. Youn, D-Y. Choi and C.S. Shin. 2007. Development of inhibitors against lipase and alpha-glucosidase from derivatives of monascus pigment. FEMS Microbiology Letters 276(1): 93-98.

Kubola, J. and S. Siriamornpun. 2008. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry 110(4): 881-890.

Kumar, N. and N. Goel. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports 24: e00370, doi: 10.1016/j.btre.2019.e00370.

Kwon, Y.-I., H.-D. Jang and K. Shetty. 2006. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition 15(3): 425-432.

Likitdacharote, P. and C. Chaicharoenpong. 2015. Chemical constituents and lipase inhibitory activity of Solanum torvum fruit. pp. 1035-1042. In: Proceeding of the Burapha University International Conference, Bangsaen, Chonburi, Thailand.

Lyckander, I.M. and K.E. Malterud. 1996. Lipophilic flavonoids from Orthosiphon spicatus prevent oxidative inactivation of 15-lipoxygense. Prostaglandins, Leukotrienes and Essential Fatty Acids 54(4): 239-246.

Martinez-Gonzalez, A.I., E. Alvarez-Parrilla, Á.G. Díaz-Sánchez, L.A. de la Rosa, J.A. Núñez-Gastélum, A.A. Vazquez-Flores and G.A. Gonzalez-Aguilar. 2017. In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, fluorescence spectroscopy and molecular docking study. Food Technology and Biotechnology 55(4): 519-530.

Matsui, T., T. Tanaka, S. Tamura, A. Toshima, K. Tamaya, Y. Miyata, K. Tanaka and K. Matsumoto. 2007. -glucosidase inhibitory profile of catechins and theaflavins. Journal of Agricultural and Food Chemistry 55(1): 99-105.

Menichini, F., L. Losi, M. Bonesi, A. Pugliese, M.R. Loizzo and R. Tundis. 2014. Chemical profiling and in vitro biological effects of Cardiospermum halicacabum L. (Sapindaceae) aerial parts and seeds for applications in neurodegenerative disorders. Journal of Enzyme Inhibition and Medicinal Chemistry 29(5): 677-685.

Neelapong, W., B. Phonyotin and W. Sittikijyothin. 2019. Extraction of active compounds from Thai herb: Power and extract. The Journal of King Mongkut's University of Technology North Bangkok 29(1): 157-166. (in Thai)

Noda, K., M. Teerawatsakul, C. Prakongvongs and L. Chaiwiratnukul. 1994. Major Weeds in Thailand. 3rd ed. Mass & Medias Co., LTD., Bangkok. 164 p.

Panche, A.N., A.D. Diwan and S.R. Chandra. 2016. Flavonoids: An overview. Journal of Nutritional Science 5: e47, doi: 10.1017/jn

s.2016.41.

Pandey, M.M., R. Govindarajan, A.K.S. Rawat and P. Pushpangadan. 2005. Free radical scavenging potential of Saussarea costus. Acta Pharmaceutica 55(3): 297-304.

Phumthum, M., H. Balslev and A.S. Barfod. 2019. Important medicinal plant families in Thailand. Frontiers in Pharmacology 10: 1125, doi: 10.3389/fphar.2019.01125.

Pulbutr, P., N. Saweeram, T. Ittisan, H. Intrama, A. Jaruchotikamol and B. Cushnie. 2017. In vitro -amylase and -glucosidase inhibitory activities of Coccinia grandis aqueous leaf and stem extract. Journal of Biological Sciences 17(2): 61-69.

Rattan, A.K. and Y. Arad. 1998. Inhibition of LDL oxidation by new estradiol receptor modulator compound LY-139478, comparative effect with other steroids. Atherosclerosis 136(2): 305-314.

Sadeghian, H. and A. Jabbari. 2016. 15-Lipoxygenase inhibitors: A patent review. Expert Opinion on Therapeutic Patents 26(1): 65-88.

Siddhuraju, P. and K. Becker. 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry 51(8): 2144-2155.

Steinbrecher, U.P., S. Parthasarathy, D.S. Leake, J.L. Witztum and D. Steinberg. 1984. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proceedings of the National Academy of Sciences of the United States of America 81(12): 3883-3887.

Sudharameshwari, K., I. Rekha and R. Salini. 2018. Bioactive potential of Cardiospermum halicacabum and Butea monosperma leaf extract in combination. The Pharma Innovation Journal 7(11): 252-256.

Suwanagul, D. and R. Suwanketnikom. 2002. Weeds in Thailand. 1st ed. Kasetsart University Press, Bangkok. 440 p. (in Thai)

Vinodhini, V., M. Himaja, V.S. Saraswathi and D. Poppy. 2015. In vitro antidiabetic activity of Tragia involucrate Linn. leaf extracts. International Journal of Research in Ayurveda & Pharmacy 6(1): 1-3.

Yakaiah, V., A. Dakshinamoorthi and T.Y.S. Sudha. 2021. Novel aspects in inhibiting pancreatic lipase with potential new compound from nutmeg in connection with obesity-in vitro, in silico, in vivo and ex vivo studies. Maedica-a Journal of Clinical Medicine 16(3): 445-452.

Zhishen, J., T. Mengcheng and W. Jianming. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64(4): 555-559.