Physiological and Gene Expression Analysis of Calcium Silicate Supplemented-tomato under Salt Stress

Authors

  • สุภาลัย อารีรักษ์ 0818457464
  • Sirwat Sakhonwasee Faculty of Agricultural Production, Maejo University

Keywords:

calcium silicate, gene, salt tolerance, tomato

Abstract

Presently, many countries have problems about plant salt stress due to drought and deposition of sea salt in agricultural land. Salt stress negatively affects plant growth and production. In this research, CaSiO3 was applied to tomato plants growing under salt stress at 50 mM NaCl. The results showed that adding 1.25 mM CaSiO3 can provide the higher chlorophyll contents, relative water contents and weight compared with those grown without 1.25 mM CaSiO3. Gene expression of HAK5, APPR2-like gene and SOS2 were analyzed from tomato leaves under salt stress at 50 mM NaCl with and without 1.25 mM CaSiO3. It was found that 1.25 mM CaSiO3–treated plants under salt stress had the level of HAK5 expression were significantly higher than those plants without 1.25 mM CaSiO3 in the fourth week. Moreover, the 1.25 mM CaSiO3–treated plants also had the level of APPR2-like gene expression were significantly higher than those plants without 1.25 mM CaSiO3 in the the second week. On the other hand, the expression levels of SOS2 cannot be detected in salt stress plants supplemented with and without 1.25 mM CaSiO3 in the whole period. According to the experimental results, 1.25 mM CaSiO3–supplemented salinity plant had physiological and salt–responed gene expression more potential than those without 1.25 mM CaSiO3. Also, the 1.25 mM CaSiO3–supplemented salinity plant tends to have physiological indices and gene expression most similar to the control plants until the fourth week.

 

References

Aguilar, F., U.R. Charrondiere, B. Dusemund, P. Galtier, J. Gilbert, D.M. Gott, S. Grilli, R. Guertler, G.E.N. Kass, J. Koenig, C. Lambré, J.C. Larsen, J.C. Leblanc, A. Mortensen, D. Parent-Massin, I. Pratt, I.M. Rietjens, I. Stankovic, P. Tobback, T. Verguieva and R. Woutersen. 2009. Calcium silicate and silicon dioxide/silicic acid gel added for nutritional purposes to food supplements. The EFSA Journal 1132: 1-24.

Asmar, S.A., E.M. Castro, M. Pasqual, F.J. Pereira and J.D.R. Soares. 2013. Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Sci. Hortic. 161: 328-332

Belver, A., R. Olías, R. Huertas and M.P. Rodríguez-Rosales. 2012. Involvement of SlSOS2 in tomato salt tolerance. Bioengineered 3: 298-302.

Carey, A.T., K. Holt, S. Picard, R. Wilde, G.A. Tucker, C.R. Bird, W. Schuch and G.B. Seymour. 1995. Tomato exo-(1–>4)-β-D-galactanase. Isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone. Plant Physiol. 108: 1099-1107.

Demetriou, G., C. Neonaki, E. Navakoudis and K. Kotzabasis. 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. Biochim. Biophys. Acta, Bioenerg. 1767(4): 272-280.

Hadi, M.R. and N. Karimi. 2012. The role of calcium in plants salt tolerance. J. Plant Nutr. 3: 2037-2054.

Hasanuzzaman, M., K. Nahar and M. Fujita. 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. pp. 25-87. In Ahmad, P., M.M. Azooz and M.N.V. Prasad (eds.) Ecophysiology and Responses of Plants under Salt Stress. New York: Springer.

Huertas, R., R. Olías, Z. Eljakaoui, F.J. Gálvez, J. Li, P.A. De Morales, A. Belver and M.P. Rodríguez-Rosales. 2012. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35: 1467-1482.

Huertas, R., L. Rubio, O. Cagnac, M.J. Garcia-Schanchez, J. De Dios Alche, K. Venema, J.A. Fernandez, M.P. Rodriguez-Rosales. 2013. The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant Cell Environ. 36: 2135-2149.

Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51: 659-668.

Muneer, S., Y.G. Park, A. Manivannan, P. Soundararajan and B.R. Jeong. 2014. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int. J. Mol. Sci. 15: 21803-21824.

Nieves-Cordones, M., A.J. Miller, F. Alema´n, V. Martı´nez and F. Rubio. 2008. A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol. Biol. 68: 521-532.

Pan, Y., G. Bradley, K. Pyke, G. Ball, C. Lu, R. Fray, A. Marshall, S. Jayasuta, C. Baxter, R. Wijk, L. Boyden, R. Cade, N. Chapman, P. Fraser, C. Hodgman and G. Seymour. 2013. Network inference analysis Identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol. 161: 1476-1485.

Roberts, B.R. 1987. Methods for measuring water status and reducing transpirational water loss in trees. J. Arboriculture 13(2): 52-61.

Soares, J.D.R., M. Pasqual, A.G. De Araujo, E.M. De Castro, F.J. Pereira and F.T. Braga. 2012. Leaf anatomy of orchids micropropagated with different silicon concentrations. Acta Sci. Agron. 34: 413-421.

Soundararajan, P., I. Sivanesan, E.H. Jo and B.R. Jeong. 2013. Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress in vitro. Hort. Environ. Biotechnol. 54: 311-318.

Wang, S., P. Liu, D. Chen, L. Yin, H. Li and X. Den. 2015. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front Plant Sci. 6(759): 1-10.

Willits, D.H. and M.M. Peet. 2001. Using chlorophyll fluorescence to model leaf photosynthesis in greenhouse pepper and tomato. Acta Hortic. 507: 311-315.

Zhou, X., Y. Shen, X. Fu and F. Wu. 2018. Application of sodium silicate enhances cucumber resistance to fusarium wilt and alters soil microbial communities. Front Plant Sci. 9(624): 1-12.

Published

2020-08-24

How to Cite

อารีรักษ์ ส., & Sakhonwasee, S. (2020). Physiological and Gene Expression Analysis of Calcium Silicate Supplemented-tomato under Salt Stress. Journal of Agricultural Research and Extension, 37(2), 12–24. retrieved from https://li01.tci-thaijo.org/index.php/MJUJN/article/view/212485

Issue

Section

Research Article