Survival Rates and Heat Shock 70 Gene Expression in the Fibroblast Cell Lines of 3 Types of Beef Cattle Bred under Hydrothermal Conditions

Main Article Content

Thammanoon Thanee
Payungsuk Intawicha

Abstract

Gene Heat shock proteins (HSP70) play an important role in the adaptation to survival and heat response of cells. The purpose of this study was to determine the effect of hot temperatures on the survival rates and gene expression of fibroblast cells from Khao Lamphun cattle, crossbreed Khao Lamphun-Angus cattle and Khao Lamphun-Charolais cattle. The fibroblast cells were cultured in a 5% CO2 incubator at 38.5°C. Study 1: The cell survival rate of fibroblast cells was determined after culture under hydrothermal conditions at 42°C for 24 and 48 hours. The cells of Khao Lamphun cattle (97.73±0.16 and 93.33±1.90 percent) showed a viability rate higher than that of crossbreed Khao Lamphun-Angus cattle (96.36±0.35 and 88.88±1.31 percent) and Khao Lamphun-Charolais (96.70±0.44 and 89.16±1.37 percent; p<0.05). Study 2: The HSP70 gene expression of fibroblast cells after exposure to the hot temperature of 42°C for 6, 12 and 24 hours was evaluated using the RT-PCR method. It was found that HSP70 gene was expressed in all groups. This demonstrated the mechanism of cellular heat response of both native and crossbred cattle. In conclusion, the growth rate of fibroblast cells increased during in vitro culture. The survival rate of fibroblast cells under hydrothermal conditions from Khao Lamphun cattle was higher than that of fibroblast cells from crossbred cattle. The fibroblast cells of Khao Lamphun and crossbred cattle showed HSP70 gene expression under hot conditions, which suggests that the fibroblast cells of beef cattle should be able to tolerate heat and adapt to the tropical conditions of Thailand.

Article Details

How to Cite
Thanee, T., & Intawicha, P. . (2020). Survival Rates and Heat Shock 70 Gene Expression in the Fibroblast Cell Lines of 3 Types of Beef Cattle Bred under Hydrothermal Conditions. King Mongkut’s Agricultural Journal, 38(1), 8–15. retrieved from https://li01.tci-thaijo.org/index.php/agritechjournal/article/view/240983
Section
Research Articles

References

จักรกริช เจริญศิลป์, สุภร กตเวทิน, ยุพิน ผาสุข และสุรางคนา สุขเลิศ. 2555. การตอบสนองทางสรีรวิทยาและปริมาณ HSP70
ในเซลล์เม็ดเลือดขาวของโคพื้นเมืองไทยต่อสภาพอากาศในรอบวัน. แก่นเกษตร 40 (2): 377-380.
เรืองยศ พิลาจันทร์ และวันชัย อินทิแสง. 2559. สมรรถภาพการผลิตของโคลูกผสมพื้นเมือง×โลน์ไลน์แองกัสระดับสายเลือดต่าง ๆ
เมื่อได้รับฟางข้าวและกากแป้งมันสำปะหลังหมัก. แก่นเกษตร. 44 (1): 425-431.
Abdian, N., Dehkordi, P. G., Chaleshtori, M. H., Arjenaki, M. G., Doosti, A., and Amiri, B. 2015. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).
Cell Tissue Bank 16: 487-495.
Agha, E., Kosanovic, D., Schermuly, R. T., and Bellusci, S. 2016. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol. 53: 76-84.
Basirico, L., Morera, P., Primi, V., Lacetera, N., Nardone, A., and Bernabucci, U. 2011. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones 16: 441-448.
Bhanuprakash, V., Singh, U., Sengar, G., Sajjanar, B., Bhusan, B., Raja, T. V., Alex, R., et al. 2016. Differential effect of thermal stress on HSP70 expression, nitric oxide production and cell proliferation among native and crossbred dairy cattle. J. Therm Biol. 59: 18-25.
Changqing, L., Guo, Y., Taofeng, L., Xiangchen, L., Weijun, G., and Yuihui, M. 2014. Establishment and genetic characteristics analysis of in vitro culture a fibroblast cell line derived from Wuzhishan miniature pig. Cryobiology 68: 281-287.
Collier, R. J., Dahl, G. E., and VanBaale, M. J. 2006. Major advances associated with environmental effects on dairy cattle.
J. Dairy Sci. 89: 1244-1253.
Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., and Nardai, G. 1998. The 90-kDa molecular chaperone family: structure, function and clinical applications a comprehensive review. Pharmacol Therapeut 79: 129-168.
Deb, R., Sajjanar, B., Singh, U., Kumar, S., Singh, R., Sengar G., and Sharma, A. 2014. Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breed of cattle: A comparative study. Gene 536: 435-440.
Dobson, H., and Smith, R. F. 2000. What is stress, and how does it affect reproduction. Anim Reprod Sci. 60-61: 743-752.
Fanny, D. 2004. The sculpturing role of fibroblast-like cells in morphogenesis. Perspect Biol. Med. 47: 339-356.
Fujita, J. 1999. Cold shock response in mammalian cells. J. Mol Microb Biotech. 1: 243-255.
Intawicha, P., Ou, Y. W., Lo, N. W., Zhang, S. C., Chen, Y. Z., Lin, T. A., Su, H. L., et al. 2009. Characterization of embryonic stem cell lines derived from New Zealand white rabbit embryos. Cloning Stem Cells 11: 27-38.
Kregel, K. C. 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance.
J. Appl Physiol. 92: 2177-2186.
Lee, J. W., Li, H., Wu, H. Y., Liu, S. S., and Shen, P. C. 2016. Improved cellular thermotolerance in cloned Holstein cattle derived with cytoplasts from a thermotolerant breed. Theriogenology 85: 709-717.
Ravagnolo, O., Misztal, I., and Hoogenboom, G. 2000. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci. 83: 2120-2125.
Sartori, R., Haughian, J. M., Shaver, R. D., Rosa, G. J., and Wiltbank, M. C. 2004. Comparison of ovarian function and circulating steroids in estrous cycles of Holstein heifers and lactating cows. J. Dairy Sci. 87: 905-920.
Schuldiner, M., Yanuka, O., Eldor, J. I., Melton, D. A., and Benvenisty, N. 2000. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. PNAS 97: 11307-11312.
Singh, A. K., Upadhyay, R. C., Malakar, D., Kumar, S., and Singh, S. V. 2014. Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J. Therm Biol. 43: 46-53.
Wegner, K., Lambertz, C., Das, G., Reiner, G., and Gauly, M. 2014. Climatic effects on sow fertility and piglet survival under influence of a moderate climate. Animal 8: 1526-1533.
WU, H. Y., Peng, S. Y., Li, H., Lee, J. W., Kesorn, P., Wu, H. H., Ju, J. C., and Shen, P. C. 2017. Ear fibroblast derived from Taiwan yellow cattle are more heat resistant than those from Holstein cattle. J. Therm Biol. 66: 56-62.