Potential of Trichoderma spp. Spore Suspension to Control Egg Hatchability and Development of Root-knot Nematode (Meloidogyne incognita) in Tomatoes
Main Article Content
Abstract
The fungi Trichoderma spp. can be found living naturally in various places such as plant residues,
organic matter, and soils. Because they are antagonistic microorganisms that can be grown fast, they are often studied and used in various applications in microbiology and agriculture. The fungi are sometimes used to create enzymes or secondary substances that find application in the control of plant pathogens. The main aim of this research was to evaluate the ability of Trichoderma spp. to inhibit the egg hatching of the root-knot nematode Meloidogyne incognita in tomatoes. Twenty-two isolates of Trichoderma spp. were used in this study. The findings indicated that 3 isolates; T35-CO4, M4, and O3-T34, exhibited the highest ability to inhibit the egg hatching of the root-knot nematode. The fungi infection reached 100% and the levels of egg hatching 1.33, 1.50, and 2.00% at 72 hours after incubation, respectively, compared to 80.6% for the control. The main result of the greenhouse experiment was that the 3 isolates of Trichoderma spp. mentioned above were able to effectively reduce galling and egg production in the plant roots, compared with control treatment. This research shows that Trichoderma spp. can be used to promote plant resistance and is a fungal agent that is antagonistic to nematodes. Furthermore, the fungi have the potential to be used in the biocontrol of root-knot nematodes that infect other plant species.
Article Details
King Mongkut's Agricultural Journal
References
จิระเดช แจ่มสว่าง. 2553. ไตรโคเดอร์มา: เชื้อราปฏิปักษ์ควบคุมโรคพืช. นครปฐม: มหาวิทยาลัยเกษตรศาสตร์.
พราวมาส เจริญรักษ์. 2559. ประสิทธิภาพของเชื้อราปฏิปักษ์ Trichoderma asperellum ในการลดโรคเมล็ดด่างส่งเสริมการเจริญเติบโต
และเพิ่มผลผลิตของข้าว. วิทยานิพนธ์ปริญญาเอก, มหาวิทยาลัยเกษตรศาสตร์ นครปฐม.
สมชาย สุขะกูล. 2549. ไส้เดือนฝอยศัตรูพืช และการควบคุม. นครปฐม: มหาวิทยาลัยเกษตรศาสตร์.
Al-Hazmi, A. S., and TariqJaveed, M. 2016. Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi Journal of Biological Sciences 23(2): 288-292.
Aness, M., Tronsmo, A., Edel-Hermann, V., Hjeljord, L. G., Heraud, C., and Steinberg, C. 2010. Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biology 114(9): 691-701.
Arayarungsarit, L. 1987. Yield ability of rice varieties in fields infested with root-knot nematode. IRRI 12(5): 14.
Bigirimana, J., De Meyer, G., Poppe, J., Elad, Y., and Höfte, M. 1997. Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harziamum. Ghent University; Mededelingen van de Faculteit Landbouwwetenschappen 62: 1001-1007.
Calderón, A. A., Zapata, J. M., Muñoz, R., Pedreño, M. A., and Barceló, A. R. 1993. Resveratrol production as a part of
the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. New Phytologist 124: 455-463.
De Palma, M., Salzano, M., Villano, C., Aversano, R., Lorito, M., Ruocco, M., et al. 2019. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Horticulture Research 6(5): 1-15.
Evans, K, Trudgill, D. L., and Webster, J. M. 1993. Plant parasitic nematodes in temperate agriculture. pp. 648. Cambridge, UK: University Press.
Galano, C. D., Gapasin, R. M., and Lim, J. L. 1996. Efficacy of Paecilomyces lilacinus isolates for the control of root-knot nematode (Meloidogyne incognita (Kofoid and White) Chitwood) in sweet potato. Annals of Tropical Research 18: 4-12.
Gortari, M. C., and Hours, R. A. 2008. Fungal chitinases and their biological role in the antagonism onto nematode eggs.
Mycological Progress 7(4): 221-238.
Hewezi, T., Pantalone, V., Bennett, M., Stewart, C. N., and Burch-Smith, T. M. 2018. Phytopathogen-induced changes to plant methylomes. Plant Cell Reports 37: 17-23.
Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., et al. 2013. Top 10 plant-parasitic nematodes
in molecular plant pathology. Molecular Plant Pathology 14(9): 946-961.
Khun-in, A., Sukhakul, S., Chamswarng, C., Tangkijchote, P., and Sasnarukkit, A. 2015. Culture filtrate of Pleurotus ostreatus
isolate Poa3 effect on egg mass hatching and juvenile 2 of Meloidogyne incognita and its potential for biological control.
Journal of the International Society for Southeast Asian Agricultural Sciences 21(1): 46-54.
Manzanilla-Lopez, R. H., Kenneth, E., and Bridge, J. 2004. Plant diseases caused by nematodes. In Nematology-advances and perspectives. Volume II: Nematode management and utilization, Z. X. Chen, S. Y. Chen, and D. W. Dickson, eds.
pp. 637-716. Cambridge, UK: CABI Publishing.
Martínez-Medina, A., Fernandez, I., Lok, G. B., Pozo, M. J., Pieterse, C. M., and Van Wees, S. C. 2017. Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytologist 213: 1363-1377.
Perry, R. N., and Starr, J. L. 2009. Root-knot nematodes. London, UK: CABI International.
Poveda, J., Abril-Urias, P., and Escobar, C. 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology 11(992): 1-14.
Ravichandra, N. G. 2010. Methods and techniques in plant nematology. Delhi, India: PHI Learning Pvt. Ltd.
Sahebani, N., and Hadavi, N. 2008. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry 40(8): 2016-2020.
Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., and Spiegel, Y. 2001. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91(7): 687-693.
Sharon, E., Chet, I., Viterbo, A., Bar-Eyal, M., Nagan, H., Samuels, G. J., and Spiegel, Y. 2007. Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. European Journal of Plant Pathology 118(3): 247-258.
Suarez, B., Rey, M., Castillo, P., Monte, E., and Llobell, A. 2004. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Applied Microbiology and Biotechnology 65(1): 46-55.
Sun, M. H., Gao, L., Shi, Y. X., Li, B. J., and Liu, X. Z. 2006. Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. Journal of Invertebrate Pathology 93(1): 22-28.
Wheeler, T. A., Siders, K. T., Anderson, M. G., Russell, S. A., Woodward, J. E., and Mullinix. B. G. 2014. Management of Meloidogyne incognita with chemicals and cultivars in cotton in a Semi-Arid environment. Journal of Nematology 46(2): 101-107.
Williason, V. M., and Hussey, R. S. 1996. Nematode pathogenesis and resistance in plants. Plant Cell 8(10): 1735-1745.
Zhang, S., Gan, Y., Xu, B., and Xue, Y. 2014. The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae. Biological Pest Control 72: 1-8.