Selection and Characterization of Antagonistic Bacteria as a High Potential Control Agent for Xanthomonas oryzae pv. oryzae Causing Bacterial Leaf Blight Disease in Purple Rice Bacillus siamensis to control Xanthomonas oryzae pv. oryzae
Main Article Content
Abstract
Bacterial leaf blight disease is one of the most serious diseases in rice, caused by Xanthomonas oryzae pv. oryzae. Purple rice is one of the rice varieties that has been infected by this pathogen. Thus, screening and selecting highly efficient antagonistic bacteria for controlling the pathogen is necessary for disease control to reduce epidemics and crop loss. Forty-eight isolates of antagonistic bacteria were isolated from rice rhizosphere soil. The highly effective antagonistic bacteria were selected by using the dual culture method. The results showed the bacteria KY16 and KY17 were the most effective antagonists that inhibited X. oryzae pv. oryzae. The inhibition growth zone of antagonists were approximately 12.70 mm and 11.95 mm, respectively. The morphological and some biochemical characteristics of antagonistic bacteria belong to Bacillus sp. group. Additionally, the antagonists KY16 and KY17 were identified as Bacillus siamensis based on 16S rRNA, gyrA, and rpoB gene sequences. Antimicrobial biosynthesis genes of the antagonistic bacteria were also examined. The results revealed that iturin A and surfactin biosynthesis genes were detectable. Following this study, the most effective antagonistic bacteria can be applied to control the bacterial leaf blight disease of purple rice in rice paddy fields.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
King Mongkut's Agricultural Journal
References
Azizi, P. Rafil, M. Y. Abdullah, S. N. A., Nejat, N., Maziah, M., Hanafi, M. M., Latif, M. A., & Sahebi, M. (2016). Toward understanding of rice innate immunity against Magnaporthe oryzae. Critical Reviews in Biotechnology. 36(1), 165-174. https://doi.org/10.3109/07388551.2014.946883
Barrow, G., & Feltham, R. (1993). Cowan and Steel's Manual for the Identification of Medical Bacteria.3rd ed. Cambridge: Cambridge University Press.
Cheng, H. R., & Jiang, N. (2006). Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnology Letters. 28(1), 55-59. https://doi.org/10.1007/s10529-005-4688-z
Chun, J., & Bae, K. S. (2000). Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek. 78(2), 123-127. https://doi.org/10.1023/A:1026555830014
Feng, X., Xu, R., Zhao, N., Wang, D., Cun, M., & Yang B. (2022). Isolation, identification, and characterization of endophytic Bacillus from walnut (Juglans sigillata) root and its biocontrol effects on walnut anthracnose. Agriculture. 12(12), 1-18. https://doi.org/10.3390/agriculture12122102
Fongfon, S., Pusadee, T., Prom-u-thai, C., & Rerkasem, B. (2021). Diversity of purple rice (Oryza sativa L.) landraces in Northern Thailand. Agronomy. 11(10), 1-14. https://doi.org/10.3390/agronomy11102029
Gorai, P. S., Ghosh, R., Mandal, S., Ghosh, S., Chatterjee, S., Gond, S. K., & Mandal, N. C. (2021). Bacillus siamensis CNE6- a multifaceted plant growth promoting endophyte of Cicer arietinum L. having broad spectrum antifungal activities and host colonizing potential. Microbiological Research. 252, 1-12. https://doi.org/10.1016/j.micres.2021.126859
Hussain, T., & Khan, A. A. (2022). Biocontrol prospective of Bacillus siamensis-AMU03 against soil-borne fungal pathogens of potato tubers. Indian Phytopathology. 75(1), 179-189. https://doi.org/10.1007/s42360-021-00447-8
Huynh, T., Voros, M., Kedves, O., Turbat, A., Sipos, G., Leitgeb, B., Kredics, L., Vagvolgyi, C., & Szekeres A. (2022). Discrimination between the two closely related species of the operational group B. amyloliquefaciens based on whole-cell fatty acid profiling. Microorganisms. 10(2), 1-13. https://doi.org/10.3390/microorganisms10020418
Jin, P., Wang, Y., Tan, Z., Liu, W., & Miao, W. (2020). Antibacterial activity and rice-induced resistance, mediated by C15surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae. Pesticide Biochemistry and Physiology. 169, 1-9. https://doi.org/10.1016/j.pestbp.2020.104669
Joshi, R., & McSpadden Gardener, B. B. (2006). Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology. 96(2), 145-154. https://doi.org/10.1094/PHYTO-96-0145
Kovacs, N. (1956). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature. 178, 703. https://doi.org/10.1038/178703a0
Kumvinit, A., & Akarapisan, A. (2019). Characterization of blackleg and soft rot from potato in northern Thailand. Journal of Phytopathology. 167(11-12), 655-666. https://doi.org/10.1111/jph.12859
Narendra Kumar, P., Swapna, T. H., Khan, M. Y., Reddy. G., & Hameeda B. (2017). Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes. Saudi Journal Biological Sciences. 24(7), 1722-1740. https://doi.org/10.1016/j.sjbs.2015.09.014
Ngalimat, M. S., Mohd Hata, E., Zulperi, D., Ismail, S. I., Ismail, M. R., Mohd Zainudin, N. A. I., Saidi, N. B., & Yusof, M. T. (2021). Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms. 9(4), 1-23. https://doi.org/10.3390/microorganisms9040682
Nino-Liu, D. O., Ronald, P. C., & Bogdanove, A. J. (2006). Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology. 7(5), 303–324. https://doi.org/10.1111/j.1364-3703.2006.00344.x
Pusadee, T., Wongtamee, A., Rerkasem, B., Olsen, K. M., & Jamjod, S. (2019). Farmers drive genetic diversity of Thai purple rice (Oryza sativa L.) landraces. Economic Botany. 73(1), 76-85. https://doi.org/10.3390/agronomy11102029
Raymaekers, K., Ponet, L., Holtappels, D. Berckmans, B., & Cammue, B. P. A. (2020). Screening for novel biocontrol agents applicable in plant disease management – A review. Biological Control. 144, 1-18. https://doi.org/10.1016/j.biocontrol.2020.104240
Senakun, C., Chunta, S., Somboonwattanakul, I., Yodsiri, S., Kurukodt, J., & Senakun, A. (2018). Diversity, utilization and cultural significance of purple rice in northeastern Thailand. International Journal of Agricultural Technology. 14(7), 1893-1904.
Shen, N., Li, S., Li, S. Y., Zhang, H., & Jiang, M. (2022). The siderophore-producing bacterium, Bacillus siamensis Gxun-6, has an antifungal activity against Fusarium oxysporum and promotes the growth of banana. Egyptian Journal of Biological Pest Control. 32(1), 1-9. https://doi.org/10.1186/s41938-022-00533-7
Simmons, J. S. (1926). A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi: with colored plate. The Journal of Infectious Diseases. 39(3), 209-214. https://doi.org/10.1093/infdis/39.3.209
Sombunjitt, S., Sriwongchai, T., Kuleung, C., & Hongtrakul, V. (2017). Searching for and analysis of bacterial blight resistance genes from Thailand rice germplasm. Agriculture and Natural Resources. 51(5), 365-375. https://doi.org/10.1016/j.anres.2017.11.001
Song, Z., Liu, K., Lu, C., Yu, J., Ju, R., & Liu, X. (2011). Isolation and characterization of a potential biocontrol Brevibacillus laterosporus. African Journal of Microbiology Research. 5(18), 2675-2681. https://doi.org/10.5897/AJMR11.335
Syed Ab Rahman, S. F., Singh, E., Pieterse, C. M. J., & Schenk, P. M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science. 267, 102-111. https://doi.org/10.1016/j.plantsci.2017.11.012
Talbot, N. J. (2003). On the trial of a cereal killer: exploring the biology of Magnaprothe grisea. Annual Review of Microbiology. 57, 177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
Velho, A. C., Mondino, P., & Stadnik, M. J. (2018). Extracellular enzymes of Colletotrichum fructicola isolates associated to apple bitter rot and Glomerella leaf spot. Mycology. 9(2), 145-154. https://doi.org/10.1080/21501203.2018.1464525
Xie, S., Zang H., Wu, H., Uddin Rajer, F., & Gao, X. (2018). Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae. Molecular Plant Pathology. 19(1), 49-58. https://doi.org/10.1111/mpp.12494
Xie, Z., Li, M., Wang, D., Wang, F., Shen, H., Sun, G., Feng, C., Wang X., Chen, D., & Sun X. (2021). Biocontrol efficacy of Bacillus siamensis LZ8 against brown spot disease of tobacco caused by Alternaria alternata. Biological Control. 154, 1-8. https://doi.org/10.1016/j.biocontrol.2020.104508
Xu, B. H., Lu, Y. Q., Ye, Z. W., Zheng, Q. W., Wei, T., Lin, J. F., & Guo, L. Q. (2018a). Genomics-guided diskovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. Plos One. 13(8), 1-18. https://doi.org/10.1371/journal.pone.0202893
Xu, B. H., Ye, Z. W., Zheng, Q. W., Wei, T., Lin, J. F., & Guo, L. Q. (2018b). Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15. 3 Biotech. 8(444), 1-10. https://doi.org/10.1007/s13205-018-1443-4