การเปรียบเทียบระดับการเติม <I> Pediococcus pentosaceus </I> สำหรับอาหารผสมครบส่วนแบบหมัก ต่อคุณภาพการหมัก คุณค่าทางโภชนะและการย่อยได้ในหลอดทดลอง

Main Article Content

ณัชชา เกษพานิช
เสาวลักษณ์ แย้มหมื่นอาจ
ทศพล มูลมณี
ก ทีปลักษณ์ ระงับเหตุ
พงศ์ธร คงมั่น

บทคัดย่อ

จุดประสงค์ของการศึกษานี้คือ การเปรียบเทียบระดับของการเติมเชื้อ Pediococcus pentosaceus ในการผลิตอาหารผสมครบส่วนแบบหมัก (ensiled total mixed ration; eTMR) ต่อคุณภาพการหมัก คุณค่าทางโภชนะและคุณลักษณะกระบวนการหมักในกระเพาะรูเมนโดยวิธีการผลิตแก๊สในหลอดทดลอง ( In vitro gas production technique) การศึกษานี้ทำการแบ่งกลุ่มทดลองออกเป็น 5 กลุ่ม 3 ซ้ำ คือ 1) อาหารผสมครบส่วนสด (fresh TMR) 2) อาหารผสมครบส่วนแบบหมักที่ไม่เติมเชื้อ (eTMR) 3) อาหารผสมครบส่วนแบบหมักที่เติมเชื้อ P. pentosaceus ที่ระดับ 104 CFU/g (PP4) 4) อาหารผสมครบส่วนแบบหมักที่เติมเชื้อ P. pentosaceus ที่ระดับ105 CFU/g (PP5) และ 5) อาหารผสมครบส่วนแบบหมักที่เติมเชื้อ P. pentosaceus ที่ระดับ 106 CFU/g (PP6) ตามลำดับ ผลการศึกษาพบว่า กระบวนการหมักทำให้ค่า pH ปริมาณไขมัน เยื่อใยที่ไม่ละลายในสารละลายเป็นกลาง เฮมิเซลลูโลสและปริมาณแก๊สสะสมที่ 72 ชั่วโมงลดลง ในขณะที่ปริมาณNH3-N กรดแลคติก และกรดบิวทีริกสูงขึ้น
อย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับอาหารผสมครบส่วนแบบสด การเติมเชื้อ P. pentosaceus ทำให้ค่า pH และปริมาณกรดบิวทีริกต่ำลงเมื่อเปรียบเทียบกับกลุ่มที่ไม่ได้ใช้ อีกทั้งการเติมเชื้อ P. pentosaceus ยังทำให้ปริมาณแก๊สและการย่อยได้ของวัตถุแห้ง (IVDMD) และอินทรียวัตถุ (IVOMD) ในหลอดทดลองของอาหารผสมครบส่วนแบบหมักสูงขึ้น ระดับของการเติมเชื้อ P. pentosaceus ที่ต่างกันส่งผลให้ค่า pH และปริมาณ NH3-N มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ โดยพบว่าการเติมเชื้อ P. pentosaceus ที่ 106 CFU/g มีค่าต่ำที่สุด แต่ทั้งนี้กลับไม่ส่งผลต่อคุณค่าทางโภชนะและการย่อยได้ในหลอดทดลอง จากผลการศึกษานี้สามารถสรุปได้ว่าการเติมเชื้อ P. pentosaceus ที่ 104 CFU/g ถึง 106 CFU/g สามารถใช้ในการผลิตอาหารผสมครบส่วนแบบหมักได้ ในขณะที่การเติมเชื้อ P. pentosaceus ที่ 106 CFU/g ให้ผลลัพธ์ในกระบวนการหมักที่ดีในแง่ของค่า pH และปริมาณ NH3-N ของอาหารผสมครบส่วนแบบหมักที่ต่ำ

Article Details

บท
บทความวิจัย

References

AOAC. 2000. Official Methods of Analysis. 17th ed. Association of Official Analytical Chemists, Gaithersburg, M.D.

Agarussi, M.C.N., O.G. Pereira, R.A. de Paula, V.P. da Silva, J.P.S. Roseira and F.F. e Silva. 2019. Novel lactic acid bacteria strains as inoculants on alfalfa silage fermentation. Scientific Reports 9(1): 0087, doi: 10.1038/s41598-019-44520-9

Ali, M., J.W. Cone, N.A. Khan, W.H. Hendriks and P.C. Struik. 2015. Effect of temperature and duration of ensiling on in vitro degradation of maize silages in rumen fluid. Journal of Animal Physiology and Animal Nutrition 99(2): 251-257.

Bal, M.A., J.G. Coors and R.D. Shaver. 1997. Impact of the maturity of corn for use as silage in the diets of dairy cows on intake, digestion, and milk production. Journal of Dairy Science 80(10): 2497-2503.

Bueno, A.V.I., G. Lazzari, C.C. Jobim and J.L.P. Daniel. 2020. Ensiling total mixed ration for ruminants: A review. Agronomy 10(6): 879, doi: 10.3390/agronomy10060879.

Chaney, A.L. and E.P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry 8(2): 130-132.

De Man, J.C., M. Rogosa and M.E. Sharpe. 1960. A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23(1): 130-135.

Dewar, W.A., P. McDonald and R. Whittenbury. 1963. The hydrolysis of grass hemicelluloses during ensilage. Journal of the Science of Food and Agriculture 14(6): 411-417.

Ertekin, I. and M. Kızılsimsek. 2020. Effects of lactic acid bacteria inoculation in pre-harvesting period on fermentation and feed quality properties of alfalfa silage. Asian-Australasian Journal of Animal Sciences 33(2): 245.

Fijalkowska, M., B. Pysera, K. Lipinski and D. Strusinska. 2015. Changes of nitrogen compounds during ensiling of high protein herbages - A review. Annals of Animal Science 15(2): 289-305.

Filya, I., R.E. Muck, and F.E. Contreras-Govea. 2007. Inoculant effects on alfalfa silage: Fermentation products and nutritive value. Journal of Dairy Science 90(11): 5108-5114.

Han, L. and H. Zhou. 2013. Effects of ensiling processes and antioxidants on fatty acid concentrations and compositions in corn silages. Journal of Animal Science and Biotechnology 4(1): 48, doi: 10.1186/2049-1891-4-48.

Houfani, A. A., N. Anders, A.C. Spiess, P. Baldrian and S. Benallaoua. 2020. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars- A review. Biomass and Bioenergy 134: 105481, doi: 10.1016/j.biombioe.2020.105481.

Huo, W., X. Wang, Z. Wei, H. Zhang, Q. Liu, S. Zhang, C. Wang, L. Chen, Q. Xu and G. Guo. 2021. Effect of lactic acid bacteria on the ensiling characteristics and in vitro ruminal fermentation parameters of alfalfa silage. Italian Journal of Animal Science 20(1): 623-631.

Jiang, D., B. Li, M. Zheng, D. Niu, S. Zuo and C. Xu. 2020. Effects of Pediococcus pentosaceus on fermentation, aerobic stability and microbial communities during ensiling and aerobic spoilage of total mixed ration silage containing alfalfa (Medicago sativa L.). Grassland Science 66(4): 215-224.

Kachouri, F., K. Setti, H. Ksontini, M. Mechmeche and M. Hamdi. 2016. Improvement of antioxidant activity of olive mill wastewater phenolic compounds by Lactobacillus plantarum fermentation. Desalination and Water Treatment 57(56): 27125-27137.

Kaewpila, C., P. Gunun, P. Kesorn, S. Subepang, S. Thip-Uten, Y. Cai, S. Pholsen, A. Cherdthong and W. Khota. 2021. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage. Scientific Reports 11(1): 1968, doi: 10.1038/s41598-021-81505-2.

Ketpanich, N., S. Yammuen-art and P. Kongmun. 2021. Screening and selection of lactic acid bacteria fromensiled total mixed ration at different ensiling time, pp. 55-58. In: Proceedings of the 1st International Conference on Sustainable Agriculture and Aquaculture for Well Being and Food Security.

Kietkwanboot, A. 2013. Decolorization and biodegradation of phenolics in palm oil mill effluent by white rot fungi immobilized on oil palm residues. M.S. Thesis. Prince of Songkla University, Songkhla. (in Thai)

Kim, D.H., K.D. Lee and K.C. Choi. 2021. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production. AIMS Agriculture and Food 6(1): 216-234.

Liu, Q., M. Chen, J. Zhang, S. Shi and Y. Cai. 2012. Characteristics of isolated lactic acid bacteria and their effectiveness to improve stylo (Stylosanthes guianensis Sw.) silage quality at various temperatures. Animal Science Journal 83(2): 128-135.

Menke, K.H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28(1): 7-55.

Oliveira, A.S., Z.G. Weinberg, I.M. Ogunade, A.A.P. Cervantes, K.G. Arriola, Y. Jiang, D. Kim, X. Li, M.C.M. Gonçalves, D. Vyas and A.T. Adesogan. 2017. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science 100(6): 4587-4603.

Ørskov, E.R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science 92(2): 499-503.

Patel, J.P. and P.H. Parsania. 2018. Characterization, testing, and reinforcing materials of biodegradable composites. Biodegradable and Biocompatible Polymer Composites, doi: 10.1016/B978-0-08-100970-3.00003-1.

Raffrenato, E., R. Fievisohn, K.W. Cotanch, R.J. Grant, L.E. Chase and M.E. Van Amburgh. 2017. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. Journal of Dairy Science 100(10): 8119-8131.

Ramos, J.P.F., E.M. Santos, A.P.M. dos Santos, W.H. de Souza and J.S. Oliveira. 2016. Ensiling of forage crops in semiarid regions. pp. 65-84. In: T. Da Silva (ed.). Advances in Silage Production and Utilization, IntechOpen Limited, London.

Scherer, R., A.C.P. Rybka, C.A. Ballus, A.D. Meinhart, J.T. Filho and H.T. Godoy. 2012. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chemistry 135(1): 150-154.

Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed. McGraw-Hill, New York. 672 p.

Taylor, C.C., N.J. Ranjit, J.A. Mills, J.M. Neylon and L. Kung. 2002. The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. Journal of Dairy Science 85(7): 1793-1800

Tilley, J.M.A. and R.A. Terry. 1963. A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18(2): 104-111.

Van Soest, P.J., J.B. Robertson and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-3597.

Wang, H., T. Ning, W. Hao, M. Zheng and C. Xu. 2016. Dynamics associated with prolonged ensiling and aerobic deterioration of total mixed ration silage containing whole crop corn. Asian-Australasian Journal of Animal Sciences 29(1): 62-72

Weinberg, Z.G., G. Ashbell, Y. Hen and A. Azrieli. 1993. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. Journal of Applied Bacteriology 75(6): 512-518.

Wongnen, C., C. Wachirapakorn, C. Patipan, D. Panpong, K. Kongweha, N. Namsaen, P. Gunun and C. Yuangklang. 2009. Effects of fermented total mixed ration and cracked cottonseed on milk yield and milk composition in dairy cows. Asian-Australasian Journal of Animal Sciences 22(12): 1625-1632.

Wu, J.X., C. Zong, T. Shao, Y.S. Liang, J.C. McCann, Z.H. Dong, J.F. Li, J. Zhang and Q.H. Liu. 2021. Clarifying the relationships among bacteria, lipid-related enzymes, main polyunsaturated fatty acids and fat-soluble vitamins in alfalfa (Medicago sativa L.) silage using various sugar supplementations. Animal Feed Science and Technology 272: 114799, doi: 10.1016/j.anifeedsci.2020.114799

Zhao, J., Z. Dong, J. Li, L. Chen, Y. Bai, Y. Jia and T. Shao. 2018. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresource Technology 266: 158-165.