การจำแนก และรูปแบบการแสดงออกของยีน EgBADH2 (Betaine aldehyde dehydrogenase) ในปาล์มน้ำมันพันธุ์เทเนอร่า

Main Article Content

จิระศักดิ์ วิชาสวัสดิ์
อนุรักษ์ อรัญญนาค
สนธิชัย จันทร์เปรม

บทคัดย่อ

ยีน BADH (betaine aldehyde dehydrogenase) มีหน้าที่ควบคุมการสังเคราะห์เอนไซม์ที่ใช้ในวิถีการสังเคราะห์ glycine betaine (GB) ซึ่ง GB เป็นสารในกลุ่ม osmoprotectant ที่พบในพืชชั้นสูง ถูกผลิตขึ้นและสะสมในเซลล์ภายใต้สภาวะเครียดจากการขาดน้ำ วัตถุประสงค์ของการศึกษาครั้งนี้เพื่อจำแนก full-length ของยีน EgBADH2 จากปาล์มน้ำมันพันธุ์
เทเนอร่า และศึกษารูปแบบการแสดงออกของยีนนี้ภายใต้สภาวะที่ปาล์มขาดน้ำ จากผลการศึกษา พบว่า ยีน EgBADH2ประกอบด้วยนิวคลีโอไทด์ ขนาด 1,512 คู่เบส และเปลี่ยนเป็นลำดับกรดอะมิโนได้ 503 กรดอะมิโน เมื่อวิเคราะห์ phylogenetic tree พบว่า EgBADH2 มีความสัมพันธ์ใกล้ชิดกับยีน BADH2 ในพืชหลายชนิด เช่น มะพร้าว อินทผลัม กล้วยพันธุ์ malaccensis และสับปะรด สำหรับรูปแบบการแสดงออกของยีน EgBADH2 เมื่อปาล์มน้ำมันได้รับสภาวะขาดน้ำจำลองนาน 14 วัน พบว่า ระดับการแสดงออกของยีน EgBADH2 ในช่วงเวลา 0, 1 และ 2 วัน หลังจากขาดน้ำ ยีนมีการแสดงออกเป็น 1±0.04, 0.87±0.07 และ 0.74±0.53 ตามลำดับ และไม่มีความแตกต่างกันทางสถิติ แต่แตกต่างอย่างมีนัยสำคัญทางสถิติกับการแสดงออกของยีนในวันที่ 4 ถึง 14 ที่ระดับความเชื่อมั่น 95% สรุปว่า รูปแบบการแสดงออกของยีน EgBADH2 เป็นแบบลดลง เมื่อต้นกล้า
ปาล์มน้ำมันได้รับสภาวะขาดน้ำเป็นเวลา 14 วัน

Article Details

บท
บทความวิจัย

References

บุศริน อิ่มอินทร์, นงลักษณ์ เทียนเสรี และสนธิชัย จันทร์เปรม. 2555. การบ่งชี้ยีนที่ควบคุมการสร้าง betaine aldehyde dehydrogenase
ที่อ้อยใช้ตอบสนองต่อสภาพขาดน้ำ. ใน การประชุมวิชาการแห่งชาติ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน ครั้งที่ 9.
น. 2166-2173.
อัญชนา รอดรังนก, กนกวรรณ เที่ยงธรรม และสนธิชัย จันทร์เปรม. 2560. การจำแนก และรูปแบบการแสดงออกของยีน NIP6;1 (Boric Acid channel for preferential transport of boron) ในปาล์มน้ำมันชนิดเทอเนร่า. ว.วิทย.กษ. 48 (2): 174-185.
Ali, Q., Ehahi, M., Hussain, B., Khan, N. H., Ali, F., and EIahi, F. 2011. Genetic improvement of maize (Zea mays L.) against drought stress: An overview. Agri. Sci. Res. J. 10: 228- 237.
Amudha, J., and Balasubramani, G. 2011. Recent molecular advances to combat abiotic stress tolerance in crop plants.
Biotechnol. Mol. Biol. Rev. 6 (2): 31-58.
Beule, T., Camps, C., Debiesse, S., Tranchant, C., Dussert, S., Sabau, X., Jaligot, E., Alwee, S. S. R. S., and Tregear, J. W. 2011. Transcriptome analysis reveals differentially expressed genes associated with the mantled homeotic flowering abnormality in oil palm (Elaeis guineensis). Tree Genetics & Genomes 7: 169-182.
Blumwald, E. 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12: 431- 434.
Bray, E. A., Bailey-Serres, J., and Weretilnyk, E. 2000. Responses to abiotic stresses. pp. 1158- 249. In: W. Gruissem, B. Buchannan, R. Jones, eds. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists.
Fitzgerald, T. L., Waters, D. L. E., and Henry, R. J. 2009. Betaine aldehyde dehydrogenase in plants. Plant Biol. 11: 119-130.
Hasthanasombut, S., Paisarnwipatpong, N., Triwitayakorn, K., Kirdmanee, C., and Supaibulwatana, K. 2011. Expression of
OsBADH1 gene in Indica rice (Oryza sativa L.) in correlation with salt, plasmolysis, temperature and light stresses.
POJ. 4 (7): 400-407.
Hualkasin, W., Thongin, W., Petsean, K., Phongdara, A., and Nakkaew, A. 2013. Molecular cloning and characterization of the late embryogenesis abundant group 4 (EgLEA4) gene from oil palm (Elaeis guineensis Jacq.). Songklanakarin J. Sci. Technol. 35 (3): 275-285.
Incharoensakdi, A., and Kum-arb, U. 1998. Betaine aldehyde dehydrogenase from a halotolerant cyanobacterium Aphanothece halophytica: purification, properties, and regulation by salinity.1998. J. Sci. Soc. 24: 231-240.
Ishibashi, K. 2006. Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta. 1758: 989-993.
Jiang, T., Fountain, J., Davis, G., Kemerait, R., Scully, B., Lee, R. D., and Guo, B. 2012. Root morphology and gene expression analysis in response to drought stress in maize (Zea mays). Plant Mol. Biol. Rep. 30: 360-369.
Laksana, C., and Chanprame, S. 2015. A simple and rapid method for RNA extraction from young and mature leaf of oil palm
(Elaeis guineensis Jacq.). ISSAAS J. 21 (1): 96-106.
Lam, M. K., Tan, K. T., Lee, K. T., and Mohamed, A. R. 2009. Malaysian palm oil: surviving the food versus fuel dispute
for a sustainable future. Renew Sust. Energ Rev.13: 1456-1464.
Li, G., Wu, H., Sun, Y., and Zhang, S. 2016. Betaine aldehyde dehydrogenase (BADH) expression and betaine production in sugarbeet cultivars with different tolerances to drought stress. Sugar Tech. 18 (4): 420-423.
Liu, J., Zeng, H., Li, X., Xu, L., Wang, Y., Tang, W., and Han, L. 2010. Isolation and characterization of the betaine aldehyde dehydrogenase gene in Ophiopogon japonicas. Open Biotechnol J. 4: 18-25.
Lu, Y., Xu, J., Yuan, Z., Hao, Z., Xie, C., Li, X., Shah, T., Lan, H., Zhang, S., Rong, T., and Xu, Y. 2012. Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance
in maize. Mol. Breeding. 30 (1): 407-418.
Mitsuya, S., Yokota, Y., Fujiwara, T., Mori, N., and Takabe, T. 2009. OsBADH1 is possibly involved in acetaldehyde oxidation
in rice plant peroxisomes. FEBS Letters 583: 3625-3629.
Nakamura, T., Yokota, S., Muramoto, Y., Tsutsui, K., Oguri, Y., Fukui, K., and Takabe, T. 1997. Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine non-accumulator, and possible localization of its protein in peroxisomes. Plant J. 11 (5): 1115-1120.
Oishi, H., and Ebina, M. 2005. Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia tenuifolia. J. Plant Physiol. 162: 1077-1086.
Parmentier-Line, C. M., Panta, G. R., and Rowland, L. J. 2002. Changes in dehydrin expression associated with cold,
ABA and PEG treatments in blueberry cell cultures. Plant Sci. 162: 273-282.
Rival, A., and Jaligot, E. 2010. Oil palm biotechnologies are definitely out of infancy. O.C.L.17 (6): 368-374.
Rodriguez, M., Canales, E., Borroto, C. J., Carmona, E., Lopez, J., Pujol, M., and Borras-Hidalgo, O. 2006. Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. J. Plant Physiol. 163 (5): 577-584.
Shivaraj, S. M., Deshmukh, R. K., Rai, R., Belanger, R., Agrawal, P. K., and Dash, P. K. 2017. Genome-wide identification, characterization, and expression profile of aquaporin gene family in Flax (Linum usitatissimum). Sci. Rep. 17 p.
Sithtisarn, S., Harinasut, P., Pornbunlualap, S., and Cha-um, S. 2009. Accumulation of glycinebetaine and betaine aldehyde dehydrogenase activity in Eucalyptus camaldulensis clone T5 under in vitro salt stresss. Kasetsart J. (Nat Sci.) 43 (5):
146-152.
Sun, C. X., Cao, H. X., Shao, H. B., Lei, W. T., and Xiao, Y. 2011. Growth and physiological responses to water and nutrient stress
in oil palm. Afr. J. Biotech. 10 (51): 10465-10471.
Wang, F. W., Wang, M. L., Guo, C., Wang, N., Li, X. W., Chen, H., Dong, Y. Y., Chen, X. F., Wang, Z. M., and Li, H.Y. 2016.
Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata.
Genet. Mol. Res. 15 (2): 14.
Yu, X., Bai, G., Liu, S., Luo, N., Wang, Y., Richmond, D. S., Pijut, P. M., Jackson, S. A., Yu, J., and Jiang, Y. 2013. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J. Exp. Bot. 64 (6): 1537-1551.
Zhang, L., Gao, M., Hu, J., Zhang, X., Wang, K., and Ashraf, M. 2012. Modulation role of abscisic acid (ABA) on growth,
water relations and glycine betaine metabolism in two maize (Zea mays L.) cultivars under drought stress.
Int. J. Mol. Sci. 13: 3189-3202.